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SUMMARY

The propagation of sounds and pulse waves within the cardiovascular
system is subject to strong dissipative mechanisms. To investigate the effects
of viscosity on dissipation as well as dispersion of small pressure signals in
arteries and veins, a parametric study has been carried out. A linearized
analysis of pressure waves in a cylindrical membrane that contains a viscous
fluid and whose wall is isotropically viscoelastic indicates that there are two
families of axisymmetric waves~-a family of slow waves and one of fast waves.

10) and others,

The family of slow waves has been studied earlier by Womersley
while the fast waves have only recently been examined theoretically to some extent
by Atabek and Lew.ll) Experimental evidence of the existence of the two families
was given by Van Citters14) for rubber tubes and Anliker et al., 13) for arteries
and veins under in-vivo conditions. ‘

It is shown that the faster waves are more sensitive to variations in the
elastic properties of the medium surrounding the blood vessels. At high Reynolds
numbers the attenuation due to fluid viscosity over a fixed length is found to be
substantially greater for the fast waves than for the slow waves. At very low
Reynolds numbers the effects of attenuation are reversed--that is, the family of
slow waves is much more strongly attenuated than the family of fast waves.

The radial displacements are generally much larger for the slow waves
than for the fast waves, while conversely the axial displacements are much larger
for the faster waves than for the slow waves. For the family of slow waves the
axial wall displacements are larger than the radial displacements for sufficiently
low frequencies. The presence of external constraints modifies these results,

For the slow waves the phase angle between pressure and radial wall
displacement is virtually negligible for mild external constraints, while the phase
angles between pressure and fluid velocity are at most 45°. The corresponding
phase angles for the fast waves exhibit much larger variations with changes in the
elastic properties of the surrounding medium.

The theoretical predictions for an elastic membrane are in good agreement
with the limited quantitative experimental results of Van CittersM) for a latex
rubber tube. A comparison with the in-vivo data of Anliker et a1.13) shows

clearly that the dissipation due to fluid viscosity alone can not account for the



observed attenuation and does not have the proper frequency dependence. For
physiologically meaningful parameter values and high frequencies, the theoretical
analysis confirms that the damping due to blood viséosity is much less than that
due to the viscoelasticity of the wall material for both families of waves.
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I. INTRODUCTION
A, Physiological Considerations

The circulatory system performs the vital logistic function of transporting
blood throughout the body. Investigation and research of the circulatory system is
basically motivated by humanitarian goals but such research has certainly been
enhanced and stimulated by the manned space program,

The circulatory system is a complex network of distensible, tapered, and
branching tubes with the heart as a pump. Blood pressure and pulse rate are just
two of the basic parameters which indicate the operational capabilities of such a
mechanical system and which have become basic parameters in clinical medicine.

A quantitative analysis of the dynamics of the circulatory system is consid-
erably more formidable than similar investigations of most engineering systems.

The blood itself is a non-Newtonian fluid that exhibits the characteristics of solutions
and colloidal and particle suspensions. The apparent viscosity of blood varies with
hematocrit and strain rate, The hematocrit is a measure of the relative volume of

the blood in particle form. Controlled experimentsl) have shown that the apparent vis-
cosity increases withhematocrit, decreases with strain rate andhas a viscosity coefficient
that ranges from 1 centipoise to 10 poise. However, McDonaldz) reports that blood

in the larger arteries and veins behaves like a Newtonian fluid and normally has a
viscosity coefficient of approximately 4 to 7 centipoise. No marked manifestations

of non-Newtonian behavior are observed in large blood vessels. Even though blood

exhibits compressibility, it has negligible effects on the transmission properties

of the usual types of waves that may occur in blood vesselsg).

The experiments of Bergel4) and those of McDonald and Gessner5) show that
the blood vessel walls are viscoelastic with material properties that depend more
strongly on strain than strain rate. Also, blood vessels are essentially incompres-
sible and, therefore, have a Poisson's ratio of approximately 0. 52). Experimental
dataz) further indicates that the modulus of elasticity for the artery varies from
about 106 dynes/cm2 to '108 dynes /cmz. The viscoelastic modulus can be of the
order of 25% of the elastic modulus4’5) . Geometrically, the blood vessels are
tapered tubes with the ratio of wall thickness to radius ranging from about 0.05 to
0. 30 for arteries and about 0.0l to 0. 05 for veins.

The blood vessels are imbedded in tissues, muscle or bone and are usually
constrained by these surroundings. The effects of this surrounding medium upon
the wave transmission characteristics of blood vessels have not yet been studied

quantitatively and qualitative data are fragmentary.

1



" been made by McDonaldz), RudingerG), Skalak

B. Previous Theoretical Investigations

Numerous theoretical studies of the dynamic behavior of blood vessels have
been reported in the literature. Comprehensive reviews of such investigations have
" and Fungs). The complexities of
the physical and geometric features of blood vessels necessitate an approximate
approach in any analysis of their motion. By introducing simplifying yet realistic
assumptions and a mathematical model for the mechanical behavior of the vessels,
it is possible to arrive at a tractable analytical formulation of dynamic problems
such as the prediction of the dispersion and attenuation of waves.

The theoretical analyses of dynamic problems of blood vessels can be sep-
arated into two major groups on the basis of the relative rigor with which the solid
or fluid mechanics aspects have been treated. Recent contributions emphasizing

a realistic formulation of the fluid-dynamic aspects were made by Morgan and Kiel 9)

10) and Atabek and Lewll) . The work presented here is an extension

Womersley
of these efforts and is based on a similar mathematical model.

The analytical model introduced by Morgan and Kielyg) for studying the motion
of the vessel and the blood contained in it treats the vessel wall as a linear elastic,
homogeneous, isotropic, cylindrical membrane with circular cross section and
assumes that the blood behaves like an incompressible, Newtonian fluid in laminar
motion, With this model the vessel wall does not resist local bending and therefore
its motion should be restricted to one involving small changes in the radii of curva-
ture. They also neglected the constraints of the surrounding medium, and further
simplified the boundary value problem by linearization and order of magnitude
estimates. Assuming a solution form which requires a wave travelling along the
tube, they obtained a quadratic equation for wave speed and attenuation. This
equation was solved for the limiting cases of very low frequencies and for very low
or very high fluid viscosity. One root of the quadratic equation produced an in-
finite wave speed in the inviscid limit and was therefore rejected as physically
unrealistic. Furthermore, Morgan and Kiely demonstrated that the dynamic be-~
havior of viscoelastic materials, which are dominantly elastic and subjected to a
Wave motion, can be obtained from the corresponding elastic analysis by interpreting
the elastic modulus and Poisson's ratio as complex quantities. They thus demon-
strated the applicability of the correspondence principle for linear viscoelastic

materials to their wave propagation problem.
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Womersleylo) also used this model but added a distributed, axial, elastic
constraint acting on the outside surface of the vessel to approximate the effects of
the surrounding medium. He also assumed a travelling wave solution and obtained
a quadratic equation for the wave speed and attenuation. The solution corresponding
to the root retained by Morgan and Kielyg) was investigated numerically without
restriction to limiting cases.

The analyses by Morgan and Kielyg) and by Womersleylo) have become key
references, In both studies the wave reflections were neglected and, since one of
the roots of the quadratic equation was rejected, only one type of wave was consid-
ered. Therefore, only one boundary condition at one axial location is required to
determine the solution. However, this solution is not sufficiently general to
accommodate additional constraints such as those enforced by branches and bi-
furcations or by the application of instruments such as electromagnetic flowmeters.

A further inadequacy of the Womersley solutionlo) manifests itself whenever
distributed radial constraints are present. Womersley's resultslo) predict at most
a 15% change in the speed of the wave studied for arbitrary variations in the axial
constraint and for all Reynolds numbers. By contrast, the addition of an infinite
radial constraint besides an infinite axial constraint produces a rigid tube incapable
of transmitting waves when filled with an incompressible fluid. It appears, there-
fore, that radial constraint may play an important role and should be taken into
consideration,

Atabek and Lewll) investigated the wave propagation characteristics of
two types of waves corresponding to each of the two roots of the quadratic equation
using the basic model above. Aside from considering two types of waves, they also
examined the effects of initial stresses upon the transmission characteristics of the
waves. However, they disregarded the presence of external constraints.,

In a recent parametric study of waves in blood vessels, Maxwell and Anliker?')
treated the blood as an inviscid, compressible fluid and assumed the vessel wall to
behave like a cylindrical shell with viscoelastic wall properties. In contrast to a
membrane model, the shell model exhibits resistance to local bending in the vessel
wall and thus allows the study of a wider class of motions by relaxing the restriction
to very small changes in the radii of curvature. The effects of initial stresses are
taken into account but external constraints are disregarded. Three wave types were
predicted. For both axially symmetric and non-axially symmetric mode shapes,

the waves were characterized by the dominant displacement component that an

3
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arbitrary point of the middle surface exhibits at higher frequencies. Accordingly,
these waves can be referred to as radial, circumferential, and axial waves. The
characteristics of the axially symmetric radial waves are in agreement with
Womersley's resultsm) for very small fluid viscosity, and the basic properties of
axially symmetric radial and axial waves are in partial agreement with the results
of Atabek and Lewll) for the inviscid limit.

In contrast to earlier theoretical investigations, Maxwell and Anlikers) also
presented a detailed parametric study of the mode shapes associated with each
wave type in addition to the corresponding dispersion and attenuation. The mode
shapes are useful features that facilitate the identification of different waves in

experiments.,

C. Experimental Studies of Radial and Axial Waves

Most of the experimental data on dispersion and attenuation of radial waves

(pressure waves) given in the literature has been derived from a harmonic analysis
of the natural pulse wave generated by the heart. These data may have to be
reassessed since there is increasing evidence that the transmission of the natural

pulse is affected by nonlinear phenomenalz’ 13).

By utilizing artifically induced
pressure signals in the form of finite trains of sine wavesls), it was shown that
the aortae of anesthetized dogs are only mildly dispersive for frequencies between
40 and 200 cps. Also, in this frequency range radial waves exhibit strong attenua-
tion that is primarily due to dissipative mechanisms in the vessel wall. Moreover,
the amplitude of the radial waves portrays the same experimental decay pattern
with distance measured in wave lengths.

Experimental evidence of the presence of axial and radial waves in fluid
filled, thin walled latex rubber tubes simulating blood vessels was given by
Van Cittersl4). Both types of waves were simultaneously generated by a step
variation in pressure at one end of the tube. The axial wave had much larger axial
wall displacements and a higher speed than the radial wave. Moreover, the axial

wave could easily be attenuated by manually gripping the tube. The observations

made by Van Citters have since been partially corroborated in References 3 and 11,

The literature to date does not report the natural occurrence of axial waves
in arteries and veins. Systematic experimental data on the dispersion and attenua-
tion of induced axial waves have only now become availab1e15). A comparison of
these results with theoretical predictions will be given in the body of the report.



D. Intent and Scope of this Analysis

- The main objective of the present theoretical analysis is a parametric
study of the effects of blood viscosity, distributed external constraints, and visco-
elastic properties of the vessel on the transmission characterisitcs of radial and
axial waves. To this end, a mathematical model is introduced, which is similar to
‘those in References 9 to 11. It differs from them by the inclusion of radial con-
straints and by considering the vessel wall to be viscoelastic.

The arrangement of this report reflects the actual sequence of the studies con-

ducted. In Section II, the boundary value problem is derived and linearized with
emphasis upon the main conditions of linearization. Section II is devoted to the
general solution and specific results corresponding to limiting cases for infinite
radial and/or axial constraint and for large or small Reynolds number. The results
of the parametric analysis for the transmission characteristics, including velocity
profiles and numerical examples are described in Section IV. A comparison of
experimental results with theoretical predictions is given in Section V. Finally, the

conclusions are presented in Section VI.
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II. THE LINEARIZED BOUNDARY VALUE PROBLEM

A. Statement of Boundary Value Problem

The basic problem of interest is the motion of a blood vessél and the blood
it contains when this system is subjected to an oscillatory perturbation. However,
only the motion of a model of this system is actually analyzed. A steady-state
configuration (Figure 1) consisting of a long, cylindrical tube containing a steaming
Newtonian fluid is perturbed such that axially symmetric motion with no circumfer-
ential velocity is obtained. The perturbation is assumed to be sufficiently small to

justify linearization. Therefore, all dependent variables can be expressed in the form

()= () + () (-1
where

( ) = the value of a variable in the perturbed state

( )S= the value of a variable in the steady state
( )'= the perturbation to the variable,

Since the desired boundary value problem is linear, harmonic solutions for a given
frequency can be obtained and more general motions can be studied using Fourier
analysis.

The wall material is assumed to be isotropic, homogeneous and elastic in the
initial part of the analysis. Furthermore, the tube is assumed to have a wall

thickness to radius ratio

b«
and to behave like a membrane with constant strains and stresses across the wall.
Since the problem is axially symmetric, the wall displacements, stresses and strains
are functions only of axial distance and time., To render the membrane assumption
realistic, the displacements will be limited to those producing very small changes in
the radii of curvature. This is achieved with the restriction

L 3
R, >> | (I-3)

where L is any characteristic axial dimension.

B. Edquations of Motion and Kinematic Boundary Conditions for the Fluid

In cylindrical coordinates the equations for conservation of mass and momen-

tum for an incompressible Newtonian fluid are
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Y w)
égiu) + X =0 (1-4)

du b v »
pGt+udi+wt ) - 3 +u(mad v ) o

W ywr B )
P(at‘*u satw éz)°"aa¢.+/4( /L‘*‘/o;:ﬂ'aaz‘-)

(11-6)
where the radial and axial velocity components (u and w) and the pressure (p)
are the dependent variables,

The kinematic boundary condition for a viscous fluid postulates no relative

motion between the fluid and its boundaries (the no-slip boundary condition).

Therefore, <( )
D =r2r)_ a%leg) 3% (2,
ula,z,4)= Bt - 3t twlezi) =37 { 5 (m-7)
_ DS t) ;"5(%,1;) )'S(-z,-()
wlazt)= =5 = 57 twlozit) 535 (-8)

where '?‘ and 'S are respectively the radial and axial displacements of the middle

surface of the membrane and

a= Ro+ F(2,t) (II-9)
is the radial coordinate for the membrane displaced from its steady state equil-
ibrium position (r = Ro)'

The linearization of these equations and the conditions for the applicability of
the resulting solutions can be simplified by means of an order of magnitude
analysis. The equations (II-4) to (II-8) are expressed in a nondimensional form
such that all variables and derivatives are of order one. To this end the mean
tube radius, Ro’ and an average axial velocity, W, are chosen as nondimensional~
izing parameters for r and w, respectively., Nondimensionalizing parameters
for the other variables (T, L, U, P, ¢ R’ and S, ) are obtained on the basis of
physical arguments and the conservation equations. Therefore, the underlined,
nondimensional variables

Z
R=R ,2=T (@-10)

i
o
A+
1<
|}
cls
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Gt
g =

wr Y- __i . S
yE TR, L, % (-11)

will be assumed to be of order one.
Substitution of (II-10) and (II-11) into (II-4) yields

UL L ay) sw
Raw 4 3p 3z = O

The steady state solution satisfies this equation identically.
case the equation requires that both terms be of equal order and, therefore,

In the unsteady

R,
U= €T W (I-12)
L 34y s
" sa T 3% SO (I-13)

MW i) -(RTERAE) 3
+’-’g=;\_i—%;+-}'}% --;1‘:;_-; +g3-‘_°)‘?;_‘-;-,1 (-14)

and

W (3 e )= -G () 384

WT (1-16)

Application of (II-3) and (II-16) in (II-14) and (II-15) and retention of the lowest

order terms for the inertial and viscous forces leadg to

ey Y. o
AN R O A @1



P T\ R |, T (Sw
¥ =-Ge)T) 5 R (5E 23 e

In each of these two equations, the inertial and viscous terms have the same
ratio. However, the ratio of the pressure gradient term to either the inertia or
viscous term is larger in (II-17) than in (II-18). Since the axial pressure gradient
induces the flow, the pressure gradient term in (II-18) must be the same order as
either the inertia or viscous terms. Therefore, equation (II-17) requires that the
radial pressure gradients must vanish and thus, (II-17) and (II-18) can be reduced to

dw (P oyWT3 R JT S ) dwr _
‘575’-"’(})\\/7’)( c)sz+ ' (5ae+E 3% ) @-19)
>k
0= S, (11-20)

i ol L

> Y 3 Qwr
W 5%+ T salnSh) (122
0= E‘:"ﬁ' (I1-23)

and constitute the lowest order system defining the motion of the fluid., It is of

interest to note that the solution to the well known Poiseuille flow problem

2)
Ug ( (LJ;): o) ) é—gﬁz_i— = constant (I1-24)
and '
) 4Pl ot _ 2 .
i (n,2) == g e (RS -at) (T1-25)

also is the steady state solution of the lowest order system (II-21) to (II-23).
The assumption of small displacements of the membrane about the steady

state position requires



E’f << | and .q_f.“ << | (II-26)

(-1

With (II-26) the fluid velocity components at each point of the membrane wall can
then be expanded alout the corresponding equilibrium position of the point. The
substitution of these expansions into the boundary conditions (II-7) and (II-8) yields
after nondimensionalization the relations

Ca Y
u(,2t)+t & sa,2,t) @)+~ = g3 15% & t)

b R
+ V\—E—L(ﬁr“) g)z){. E—R: Xg(\)g)z)g (g,t)“""‘l -S% (%)t) }
and
dwr Se (3G
wi,z,8)+ % e, e, ) - = el &)y

Swr 3T
Y Lwlhz 1)+ B 20T, ) 1352, 1)

—

Application of the assumptions (II-3) and (II-16) to these equations produces

and

as the nondimensional lowest order equations for the no-slip boundary condition.

The corresponding lowest order equations in dimensional form are

2= S
u(R,, %,t): Y ('Z)t) ) w(Ro).z.)t):-_ 3"_2_(-2}{) (I1-27)

C. The Equations of Motion for the Wall

The equations of motion for the wall are determined by the conditions of

dynamic equilibrium for a wall element extending from 2 to -Z—!-cli_'- and © to

© +d6® , as shown in Figure 1, The element is subjected to constraint forces

10
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acting on the outer surface, viscous shearing stresses acting on the inner
surface, inertia forces, hoop tension, and axial tension.

The stress dyadic for the interior fluid is

m= nn.-z;t.tu"'fne‘z;..ra * e ToTo + TaeTale+ Tae G0, (@-29)

where

QU
T,,=- P H2HM S , Yoo= —p +2M A (11-29)
- QW ou QW
Taa= " pFTM 53 y Tae= /4( szt Sa (I1-30)

Substitution of (II-9) and (II-10 into (II-29) and (II-30) yields

pWiy oY W'y y
’t"-/\-= P‘.—,{_H-Z P %L_ 'S‘-] , Téa = Pl_—/e + Z.Eé— wi. z]

pWL_-_l_;_ d W Ro\*d YU
Tyz= pl.'f +2-—ﬁ_ wlL 32 ] T/Lz AR, ‘. +( -t) —é——]

From (II-19), the ratio of viscous forces to pressure forces is
vl ) P VWT Y _ pWr YU (L
= )/ LGw )Y 1= 2222 (%)

This ratio cannot be greater than one for this problem, therefore,

w® v
T o <<

and, to lowest order, the fluid stress components are
Swr

Tn= Toe = Tag = - P ) Taz= M 32 (I1-31)

For the assumed small displacements, the slope of the surface element is small,
which implies that the angle subtended by the normal of the surface element and
the radial direction, 95 , as shown in Figure 1, is also small. Under such con-
ditions one can make the approximations

11



3%

SINGs = 5% = TANGO; | cos O =1 (II-32)

and

(.= (LCos 6 - [, SINGs=T, ~ T3 5=

(II-33)
By combining (II-28), (II-31), and (II-33) one obtains the linearized form of the

viscous force exerted on the inner surface of the membrane element:

- 1 d 4 A.e
2 1 Yedo 225 )= vy 5 4 52 . 45

dw; ' 3%
< S tu ;;,Qo‘HPs R, 52 | &dedz (I1-34)

- dws
- LE \.M T-/: Ro +M
Adhering to (II-1) can express the axial and circumferential membrane forces per
unit length as:
- ’ — ’ _

Also, with axial symmetry and linear wall behavior, the unsteady strain com-

ponents are

= L
€e = Ro-qr N Ce=

The application of Hooke's law yields the relations

/ Eh
T = __‘-(Ea-+°'£e) T—or ‘ozt R/, <) (1I-36)

S
EY.

! E.Q\ Eg‘ < S
T melteroe)=s Talg e 53)

(I1~-37)
Since the mechanical properties of the biological tissue surrounding the blood
vessels are not well defined, Womersley introduced an elastic axial constraint
which is applied to theJexternal surface of the membrane and which exerts an
2

axial force -{(Q AG CosOs ) Ko S that inhibits axial displacements. In
addition to thlS constraint force, an independent, elastic, radial constraint force

-(a de cose, ) K '?, that opposes the radial displacements was introduced
in this analysis. Here K, and K, are stresses per unit displacement in the

corresponding directions. With this model for the surface stresses on the outside

12



of the membrane element, the fluid pressure must be referred to the pressure in
the surrounding medium.
The force balance on the element of Figure 1 in the presence of the constraints

introduced above requires
dz -
Pw-(o‘ Aecose )9\(L -t" + La- 3{'-)" °~<(9cass ( KE
N +T K S) +-3) (@), o de Cosas +

+2( T gfses 5"“( )]‘."mec’ses + Tz sinGg | +
+ {[Tz Q (TA_SINGS + T‘E cos 65)\%‘_‘_&2

Tea (Tusmey + T s 6,) 1, b de

Expanding the last term into a Taylor series, making use of (II-32) and (II-34) to

(I1-37), and retaining only linear terms in § and ‘$ one obtains

‘L

P h Ao = la-To, &bl s+ (0 p,
wh % s\
L jﬁo +M(‘J‘£)'_=RT%"T6'E,,
¥ % dTes 3%
+ Tay Tz T j‘i‘s T2 k’ (I1-38)

dw; .
fur I ét‘_"'{"*‘ dhi)m&.'* Aa; }“'%—M(dﬁl ER-o

K. S — M Bbu;)-% Psﬁz + ‘“‘:%i }f%
These relations must be true for zero wall displacements which requires
—1"6's = R, P, (IT-40)

and
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ATIS d Wy ) - R° APS

fond
v

Te‘M(*zzﬁ_g T J% (I-41)

Substitution of (II-36), (II-37), (II-40) and (II-41) into (II-38) and (II-39) yields

3>% ED
P R A A -0 P — P C
33 y L \
+ o 32) Ro +§. PS -p.\c
3%
+ R, J’g-% ).—% -+ _T%s Sz & (I1-42)
S yw'’ S (s
y(u" *Q\ 5S4 = K—;S — M ( dA )’\-""Ro \—o™ ( 3&%
% Tas 0%
+ 7 a%) t+ { = 3= ‘ o (m-43)

These equations differ from those given by Womersley by the inclusion of a
radial constraint term, -K\f , and by the expansions within the brackets represent-
ing the effects of a mean transmural pressure, an initial axial tension, and a shear-
ing force due to the mean flow. With the exception of both constraint terms, the
difference between (II-42) and (II-43) and the equations derived by Atabeck and Lew
is more subtle, These authors considered perturbations about a steady-state
equilibrium configuration defined by a constant axial tension, Tz s’ and by a con-
stant internal pressure causing a circumferential tension, Tes- They did not
include the effects of a mean flow. However, they accounted for the rotation of the
hoop stress acting on a surface element during its displacement by the addition of a
term -(d¥/32) ('\"95 /R,) but they fail to note that this term is actually cancelled
by the identical rotation of the pressure force acting on the internal surface of the

element.

D. Summary of the Linearized Boundary Value Problem

As a first step, the effects of radial and axial constraints on the transmission

characteristics of waves in blood vessels are being investigated for zero mean flow

14



and no initial stresses. Therefore, the bracketed terms in (II-42) and (11-43)
may be dropped and the equations of motion for the wall can be reduced to

(i 3S

+0 32 (I1-44)

p 9\ é'&"_—K\? +(¢p')ﬂ_=g° '_“ o)

>3 ) Eﬁn ¥

P B B = Kes-u(3H o e (55t 7, B) ae

With the substitution of (II-1), (II-24) and (II-25) into (II-21) to (II-23) and (II-27),
the differential equations for the fluid velocity and pressure perturbations become

4

« dw’
*\,‘\_ )*g—ﬂ',., + 53 = o (11-46)
/
2w 139" v dw
t~ P33zt a YA 'S'}L) (I1-47)
o 2P
2 (I1-48)
and the boundary conditions can be expressed as
3¢ S
u'R,3,t)= 53(2,1) | wiRe,z= 3e(7,¢) (1I-49)
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III. SOLUTION OF THE LINEARIZED BOUNDARY VALUE PROBLEM
A. The General Solution
The complete linearized boundary value problem is given by Equations
(1I-44) to (II-49). By differentiating (II-47) with respect to n. and making use of
(1I-48) one obtains

f )t é _/u "f\./b FY Y, b/v)l (III-1)

For the axially-symmetric case (éw"/;,,_)m_ a=0 which means that no purely
=No

oscillatory term in éw"/a,\, is possible. Therefore, a separable harmonic solution

can be given in the form

élu' wt

= R) Z,(2) e (II-2)
The substitution of (III-2) into (III-1) yields

%JR(M)Z 3}, /Ld/!.(""‘ R(/‘»))\

Changingtheindependent variable using

bs :i/" where _‘S = s-- < = = £$/1 Y-—u—_:‘- (III—3)

leads to

AR ) dRW) _\ _
=% +3% 33 tU £u) R(e) =

which is Bessel's equation for functions of order one. The general solution of this
equation is

R = A J(E) +8Y (%)

However, substitution of this into (III-2) and application of the symmetry requirement,
! . =
( )ur/;,,)m% =0, yields B=0 and

éw‘

Z (-2) .) &b) @ (TI-4)

or, after integration,
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win, z 4)= {Z‘(z) blLi - Jo (&) +¢w F(@) j ™t (II-5)

1
Substitution of (III-5) into (II-47) gives an oscillatory expression for -33'%
which can also be integrated and expressed in the form

7 < (.Wt
Pt =FflZz@+¥ra+R]e (1m-6)
where
d Z(3) ,
Z \2)= Z(&)= To— , Flz)=Fz)= a—?g) (II-7)

From (III-5) and (III-7), if follows that
I'4 . , .w-t
w-'(n.,z)-é)’—‘- {U*L(%)]Z(z) + ‘—E \:(a)}\oa‘ (III-8)

By substituting (III-8) into (I1-46) and integrating with respect to /L  one obtains

u'tn,zt)= 5{\.\3 J(E)-£1Z2)-% ¥ £a) }g"“"t (I11-9)

where the function of = and t generated by this integration must vanish since
u'tn, 2,t) vanishes for =0 .

The expressions for 3% /3t and 3G/dt given by (11-49), (II1-8) and
(ITI-9) can be integrated with respect to time to yield the oscillatory solution

” ” (wt
t(zt)= R,{zbt‘,t"%o J,(%)"‘E‘XZ(Z) -1 F(a) }gw (I11-10)
7 7 " t
Slzt)= {c%\l- (3] Z') + F2) }e. v (III-11)

According to (III-8), the unsteady mass flux can be written in first approx-
imation
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Q)= | puria,zt) zendas {12- & 1.(58)] #1e)

3 ) w.t
+ < ‘—;—" F(z) } 2 R:p be' (IlI-12)

Substitution of (III-6), (III-8), (III-10) and (II-11) into (II-44) and (II-45)
leads to

W 2 2
% LA, R, Fta) -BF@) =N, R Z(2) + B, Z(2) +B,F,  (m-13)

L“g‘ﬁa(“ ZIRIF(2) +(-T)F@)] = A, R 2¢a) -A, Z(2) (m-14)

where
= K _ Ko PR Co
- Pur P wt , E—Pw-y\wz 5 B\: P-l;_ﬁ" ; Bz:" E::J (III-15)
E B, B. N
- - P e z E
ﬁ?’ Pur RE we(l-67%) -2 , =< ={“%—)' R, ) C,= Zp R, (IT-16)
{_\"J (¢ °<)-] B ..) (L ) (Im-17)

A'“@s“"’J(l °<)-l+0'\_°< J i) - L } (III-18)

%
A= 0-T-p)l= JYe)-1 1 B,o-L1-J, (™% )] (ITI-19)
Ay= £0-T) - Bs(k-a)

(IT-20)

"

Elimination of ¥ (2) from (III-13) and (I1I-14) and integration of the resulting
equation gives

+ Flz)=- A, R, Z”(z) %— Z(z) + Fs (II-21)
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Aﬂ ("‘ ﬂ.) Az. Aq A‘Aq

Ag= B+ B (\-0r2) Ac=Rs- B,(\-o04) ) A= Byt B.(I-0/2) (II-22)

By combining (III-21) and (ITI-13) one obtains

" 1 17" ,A
. R‘: Z (Z)+ A8 Ro Z(z) +p\q Z(Z) =‘(F‘L+F3)§:’i:‘.

where A G-r )
= ila + 1
Aa = ‘. Av + > ¢ ﬂ:{-

By (1-0/2) ] /A‘

- 1= r: "Al ﬁ|
Aq= B, (\-02) Ay

Equation (III-23) then has the general solution

-8, 2/Ro , 2 Rs ~-{Bo EA .
Z(2)=|D,¢ +D, @° ] +(p, &%,

EIE/RO :A-f
+D, @ 1-(F’z+F3)£‘q"A"_‘gq

where B, and B, are the roots of the equation
<
O | 2 2 2 Vo
BFE{" Rg +(Rg-49A,) } , B27 "lz‘{p‘s"’(“s"”\ﬁ) }
From (ITI-26) and (II-21) one finds

‘_D‘ Q: B|‘3/Ro+ Dz Qﬁ'Z/a°}

A.B.+ A - . .
- S_';_’:.;_l‘_D3Qf€zi/a + D, eﬁ‘;z/a }

A
+QF2*F3)%§57\1 + ¥
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Substitution of (II[-26) and (II-28) into (III-6), (II-8), (II-9), (II-10) and (MI-11)
completes the formal solution. The resulting expression for p' can be given as

-{8, 0 /B, 2R,
plzp=4lslo ¢®* 1o, e ]
; T 2k, wt
+S.1 D, &I'B' ‘+D, e 1% ﬂ.]}@‘w (I-29)
where
M .8 +A-1 . (PeBotA
= |- ( ) , =\ - KL_%:_"_) (ITE-30)

The pressure pulse is often resolved into its Fourier components in

7
studying wave motion. Therefore, it is most convenient to write 4 in the form

Pl t)= pL3t) 4-4:(%,1:) +.p,(2,t) +.p, (2,1)

cwl(t- c.) -8,24R, HUU:"E') s, &/ Re
e e

plzt) = Re , pEthe

wit-2) sa/n. WE,) 5.2k
e

R(Ft)= Re P«(a +)=P,e e (TI-31)

where

P _ds. B ‘_’_3_ PTRc 1 3
5 =%3%% o , Dy T B (ms2)

ch" 3. IMNE:) =R B )) leuEa) 8,2 R (IB,) (@-33)

It is also convenient to express the other quantities such that the phase relationship
with respect to the pressure waves is exhibited. Substitution of (III-26), (III-28),
(TI1-32) and (OI-33) into (MI-8), (III-9), (II-10), (II-11) and (II-12) yields

w'n, 2t --m{ﬁls J. (¢ “Kollﬂ(‘sz)
"Pz\%ft)\ * -_S;:_ [Sz" Jo(': “-ﬁ'. “.‘Pa('zlf)
2 (z0)] } m-24)
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S, n

. L,
) Ll 6\ l: . .
wr,zt)=mr A5 = MR- 2 & pe

- ¥
raEtls BLE )< %)
A AW XCOREPACRINY

i(z,t)*mc{ Lot + Pe (z,t)} W, e"d;'

c'¢z
+lpzt) v pg)IM e }
g(%l.t);-ﬁ(_l—tho i ‘.’P\ (%,t) - 'P?. (-Z)'t)-l M's Q".d;?’

c®
+ ‘. 'P‘s(%)t) - ‘P‘l (2){)1 MqQ ! }

f) Ro t.¢‘
izt o il ezt - pt] Mee®

+LP3(E:'&) = ‘Pq(.z,t).\ M. e:'%}

’ ('¢7
w o, z,t)=§::,'§,{ Latz,t) - P, (z,t)} M,e

b
+[~Pa(%)t) - Ry (2, t)] Mg e ’ }

where
C-¢| B ' L.- 2
M.G =--—S',‘.—S‘_" )‘(‘.3/1. )1
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-3
b Bz (S ¢ .
M,e =~ = \."z'_E = J‘(‘sz)] (TII-41)

M, e"% = -{5-9-7 LS, - Jolc¥2x)] (II-42)
™M, ‘éq-:. - ‘%%_ ‘_S.L- Ja(t'vz%)j (IT-43)
Mg ef'¢’= -Zm ‘;_s_a‘_. [ 2 Q&J.(f“«)] (I-44)
M, &= _2n ‘E‘[_-S-% - gJ. (> (II-45)
e o T (5o  me
Msﬁ‘.% =~ % (S,.-\) | (TI-47)

Equations (III-31) and (III-34) to (III-47) are the solution for fluid velocity,
wall displacement, fluid mass flow and fluid velocity on the axis as a function of
time and position with six parameters (o, 3,, 62, o, r,' , and [ 2 ) and four
arbitrary constants (P, , P, , P, and ¥, ). This solution predicts four waves
travelling in the axial direction. These four waves actually constitute two different
types of waves each with a transmitted wave (wave moving in the +2 direction)
and a reflected wave (wave moving in the =& direction). The waves of the same
type are identical except for the direction of propagation. The four arbitrary
constants determine the strength of the four waves.

The parameters o and (3| are functions only of physical and geometric
properties of the fluid and the wall. The parameters Bz and e& are functions of
the physical and geometric properties and of the frequency. The external con-
straint parameters ||, and T; reflect the character of the external constraints.

It is important to note that ¢ has the form of the square root of an unsteady

Reynolds number or
22



(R,w)Ro
L=9RrR= B~ =R, (TIT-48)

The Reynolds number referred to hereafter is the one defined by (III-48).
The wave speeds ( C,/C, and C, /C,), attenuation factors ( §, and §.)

and the mode shapes as given by the magnitudes ( M, to Mg) and phase angles

( ¢| to ¢a) are of course functions only of the six parameters (0, B‘ » By s ¢
™ or Ry, I, , and T3). However, the functional relationships are complex and
""""""" J a parametric study is necessary to illustrate them. The range of physical and

geometric properties that determine o and B, are known. The range for By

and e should be as broad as possible but consistent with the long wave length

approximation which arises by applying (II-3) to wave motion.

-ﬁ; = Zﬂ'Bz —C-; >> | where ‘= | or 2 (I11-49)

Since the constraint parameters, r: and f;_ , have not yet been determined, it
is important to know what range of these parameters significantly affect the solu-
tion. Considerable insight into the effects of change in 1, and r; can be
obtained from the various limiting forms of the solution including those corres-

ponding to small and large Reynolds number.

B. Solution for Limiting Values of Reynolds Number or Large Constraint
Parameters

1. Motivation for the Limiting Cases of Solution

The general solution is complicated by the occurrence of Bessel functions
with their argument proportional to the square root of Reynolds number. It can,
however, be simplified considerably for limiting values of Reynolds number by re-
taining only the first few terms of the series and asymptotic expansions of the Bessel
functions for small and large Reynolds numbers respectively and other simplified
forms of the general solution can be given for limiting large values of the constraint
parameters.

2. Solutions for Large and Small Reynolds Number

For large Reynolds number, o is large and the modulus and phase for
the Kelvin functions
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7 ieu'

Jy/ (M) = BERy(=)+ { BE1 (=) = M, e (TII-50)
have the asymptotic forms16)
' I =</VZ yv-1 1 .
Mdl=r @ - BT =+ @-51)
’ ol v’ )
O d=<)= T +(Z-3g)m+--- -5

Substitution of (III-51) and (II-52) into (III-17) to (III-47) and retention of only the
terms of order 1 and 1/e¢ yields

18, =150 (s, +(r§£;-“/q)]vzl\+ﬁ—¥; %] (1m1-53)
\\'52=\‘E‘T<;(GK:%7{S ‘R)]Vll\ﬂ;f-« 21 @y
‘“".@w" ‘ \u-a-/ﬂ’fr {H‘ = (Kq- z,)} (Im-55)
M e _\\_2:\-:—,0-/1) ks H\‘*F;Z(Ka %) (I-56)

. K-l ' V.
My e = -5 e (g + 1)) 1{“4‘%“«1‘% &l a-n
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and A are defined by (II1-20) and (m—zz) Note that the expansions for the
second type of wave are not valid whenever (Kz Mf-o/2) 2 K 3 since in such |
cases the terms of order 1 may be smaller than the terms of order 1/e< .
For small Reynolds numbers, which correspond to small values of e , the
first three terms in the ascending series for .),,\('3) are retained:

- 2 |
~) (2)= ( ) ‘{ T~ 9 e +3z(mea "“‘)Foa smacel2l (TI-72)

Substitution of (III-72) into (III-17) to (III-47) yields
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Again, A, and A are defined by (II-20) and (II-22).

To obtain the wave speeds and attenuation factors one merely has to sub-
stitute the forms for {TBT and m into (II1-33). For small <, the wave sbeed
for the first type of waves is directly proportional to <. Then, for zero e< or
zero Reynolds number, this wave speed is zero and the wave is completely attenu-
ated for all values of the remaining parameters provided ( C-,:/ c,,' ) # 0. For
large Reynolds numbers, the variation of the wave speed and attenuation with B, .

Bz’ r" , r’,_ and o is still complicated in spite of the restriction to large
values of . The significance of the constraint parameters I and I"'l , is
demonstrated below for ¢ = 0.5, ﬁ, = 10, 3, = 100 representing a set of
physiologically meaningful values. Figures 2 and 3 show the variation of the wave
speeds with Y7 for Y% = 0. Neither wave speed varies significantly with T
for T < 104, They increase rapidly with increasing radial constraint within the

range 104< < 107. However, for ﬂ > 107, the wave speed for the first
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type of waves becomes relatively independent of [; , while the wave speed for
the second type of waves continues to increase.

Figure 4 and 5 show the variation of the wave speeds with the axial con-
straint parameter, V7, , for the case of no radial constraint ( °,=0). The wave
speed of the first type of waves is quite insensitive to axial constraint with its most
significant variation occurring for 1<}, < 103. The wave speed for the second
type of waves, however, is highly sensitive to axial constraint. It increases rapidly
with increasing axial constraint. Furthermore, from (III-54) and (III-74), it follows

that the wave speed of the second type of waves becomes infinite for

2>\ for the large Reynolds number limit ( o<-woo) (I11-88)
and
r Z(+ @__;) for the small Reynolds number limit (e<=o) . (1x-89)

For o~ = 1/2, (3, = 10, (3 = 100, T, =0, T2 =1 ond infinite
Reynolds number, this analysis predicts no motion of the tube wall or the fluid
for the second type of waves. Therefore the pressure wave merely travels through
a stationary, inviscid, incompressible fluid with infinite speed. Since the speed of
propagation of disturbances in such a fluid is known to be infinite, this type of wave
is as physically admissible as the model of the system permits. However, the
prediction of an infinite wave speed for the second type of waves in the large Reynolds
number limit lead the authors of Reference 9 to the erroneous conclusion that this
type of wave is physically inadmissible. Their analysis neglected the inertia terms
due to wall mass as well as the effects of external constraint, which corresponds to
the case [ =1 in the present analysis. ’

Two observations from the above results are most important. Both types of
waves do exist in the large Reynolds number limit. Also, variations of both wave
speeds with variation in Reynolds number and external constraint between their
limiting values are very large.

The results for the large Reynolds number limit ((1/ox)=0) with o-= 0.5,

(’>\= 10, Y". = 0=, and (3, varying over a wide range are shown on Figures
6 to 8, The wave speed for the second type of waves is much larger and exhibits
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an insignificant dependence upon Gz . The speed of the first type of waves is also
constant for large values of B, and decreases with decreasing B.. From Fig-
ure 7, the wave length parameter is proportional to B, for the second type of waves
over the entire range of P+ considered here and also for the first type of waves if
B.>1 or (A/R,) >z, . Furthermore, (A,/R,)=1 for $,=0.18 and
(A/Re)=1| for (3= 6.031. Figure 8 shows that the modulii M, to Mg are
eseentially exponential functions of B, over that range of @, for which the long
wave length approximation applies. ™M | and M, are inversely proportional to

(3: while M, to M, are inversely proportional to B, . For all B2 values con-
sidered, the phase angles are given by

¢J=¢z=¢$:o=¢6= ¢7=d)8 —¢3-_—_qo°=.¢q

Therefore, the radial wall displacement, the fluid flow rate and the fluid

)

velocity along the axis are all in phase with the pressure for both types of waves.
Axial wall displacement lags the pressure by 90° for the first type of waves and
leads the pressure by 90° for the second type. Attenuation is, of course, not
present because the inviscid limit is also an infinite Reynolds number limit. These
results for the inviscid limit are in good agreement with the results for Type I and
IIT axially symmetric waves in the inviscid analysis of Reference 3 for the range

of (3, where (A/R,) > 1.

3. Infinite Radial and Axial Constraint ‘
For limiting radial and axial constraint, |, = [ =»oo (II-23) re-~

duces to

Zlz)=0

and has a solution of the form

Z (2) = D, %° + D, (TII-90)

No waves are generated in this case. Substitution of (III-90) into (III-21) and per-
forming the limit process, \", = [ =» o0, yields

% Fa)=-D L U, () 12 + 0, an-on

30



From (IIF 6), (III-8) to (III-11), (III-90) and (ITI-91), one obtains

‘wt
P'(.z)-t) = J-:- {D' .)o((y‘e() %o +(0,.+D,y+ FL)] wa (1I1-92)
u'k_n,,z)‘t) = 0= ‘E(Ej‘t’) = S(g,t) (TI1-93)
; J (.%x ‘,Plf) op'

7 — [§ - o\ ( -] 2 4~ _

wr (I‘-) 'E)-t)“ﬂ, ‘_ ! JoL‘.‘5/1._<) } S2 (II1-94)
T

/ . 2m R, ¢ba ;p'

Q)= =5 Mye T3 (ITI-95)

where ¢ .
. l . ™= k3
Ma e " = z " 5;{ )‘((V"«) /Jo(&'u"c-() (II1-96)

M, and dJA are plotted in Figures 9 and 10.

Therefore, in the presence of very large radial and axial constraints the
solution predicts a harmonic oscillation with an amplitude that varies linearly
with the axial coordinate. As expected from the nature of the constraints, the
wall displacements and radial fluid velocity are zero. The axial fluid velocity
and mass flow are only related to the pressure variation in the tube.

4. Infinite Radial Constraint

For infinite radial constraints ( [ —e oo0) and finite axial constraint,

(III-23) reduces to

T 2

z d +dZ _
LR, 3= ~B; | R Iz 9 (II-97)
where .
{$a
t X
e bl n)- Bk B

with the index y defined by
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[ oo

R Aq |
(01-99)

<O, \=2
The index 4, determines the type of waves. Integrating (III-97), one obtains

"‘ JB’;“C
Z({l} D, % 1D, e + D3 % +Dy (II-100)

Substitution of (IIT-100) into (IT[-21) and taking T, = <° leads to
. 2
w -18; }
T Fe) = | = I (= )"Z]‘,DQ P Re
2R e
B) .] +‘_ I- r' °< \) (l ) -

* (™) (D35, + D) + Ry (m-101)

+D,

Finally, substitution of (III-100) and (III-101) into (II-6) and (III-8) to (III-11)
yields the relations:

U ('t 3 -S ;/Ro
P(%t)-/:{2 "‘J(\ <)o ” ‘) '

wlt+ &) ,5; ¥R, B, ™
S 10, 3,00 R T A

+D,e
Wt ‘wt
+ (") @ 4+ (R+R) e’ } (II-102)
M’(,L 2)1) PWR \)(%b() {J (( xﬂ> /LJ(( x)} .é_)P (III-103)
' . IolMec ) 7 90" b
w (a2 )= p':;', ‘."%.L%o( Jo(“ u‘ ] 2+ 0 'ﬁ,hl -
- Dol ) -2 ¢ J (R’u)]/[l-
24 "
15 M, zu-r)[:? 3, (¥ e) = (P )]} (=109
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Jo
’i('za“’-)=°) S, t) = —L‘il\ B )} FY

I, (P
~i$a
Ro w{zu-r)[ % e, }J (>) e (III-105)

Q)= ZnR, plp pro'[Ma 2t
J'E%H J(‘%'ﬂ)/J (¢ -<)]J (i «)Q (ITT-106)

where
T < B.ImUB) , oy = Ru(IE; ) (II-107)

From these equations it follows that only one type of pressure wave can
occur, for 1} > oo . These waves all have the property that the total instan-
taneous mass flow at any cross section is zero at all times. In accordance with
the constraint they also have no radial wall displacements. Besides this, the
solution allows for a harmonic pressure fluctuation whose amplitude varies
linearly with the axial coordinate and that exhibits an axial wall displacement.

5. Infinite Axial Constraint

For infinite axial constraint ( [, —eeo) with infinite radial constraint,
(III-23) reduces to

-idp "d)A
e @l (R"’E)Q
- = I11-108
SEADRE Bs My B@) = TR e T
and has the general solution
' -Cda .
-m' 2/7\0 ; 2/Ro 1=
Z,(a)_—_ D,e ’ +Q¢m‘ “_ E_'-i_i. B.= —(-3—'— e (TI1-109)

In this case, the type of waves present is determined by
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70 5 4=

2 A (~WW=B3) +Bzoy
Im (r—q = B. = )
Ag )t_.“IM‘. 3 -5 -8s \ <o , ’S=Z (I1-110)

Substitution of (IIT-109) into (III-21) and application of the limiting process,
r.:_ =p oo, yields

Jw A 8; ~A VB /R 18: */,
% F)= 25— (pe D e 3 i‘t?@a +F @m-11)

From (IlI-6), (III-8) to (II-11), (II-109) and (III-111), one obtains

. Z . 2/
o@t)= 4D oW %—})Q-S"%/Ro + D,,QW(H c;)esb %] o112
J = )

L Nl
u'le,2,4)= },w Ju ) [.< J(( w)-1 8, L)) 332 (o3

/
wr (/L)-Z‘t) pw ) ( 1_,4)\ J (A °<) _)(L )1%@; (II-114)
\tb
T, 0)=" '—MA * }’ﬁm , SEt= o (IT-115)
’ : -: (¢ “"'T"::.) d _
Q) Zn 2 My ¥ (I-116)
where
Co

- =6, \.MW“) , 3= ReliE))

and W\, and Qg are given by (I-96).
These equations imply that only one type of waves can exist and that these
waves have no axial wall displacements. In contrast to the prévious limiting cases,

this solution does not predict a nonpropagating, harmonic pressure fluctuation.
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IV. NUMERICAL RESULTS FROM THE GENERAL SOLUTION
A. A Parametric Analysis

Various solutions for limiting values of the constraints and Reynolds
number were described in the previous section and are illustrated in Figures 2 to
8. These solutions show that the ranges of T} , Tz , and 51 for which the

speed of waves with a long wave length vary significantly are defined by

o4
o</ <10" | L 6. , B, > (Iv-1)

For the cardiovascular system, the geometric and physical parameters may be

limited to

otsso =05 | s< B =20 Iv-2)

At the fundamental pulse frequency, ﬁz is of the order 102. Since biological
material is nearly incompressible, Poisson's ratio, ¢~ , may be taken as 0.5.
As a representative value for @, , one may choose @, = 10. Therefore, the

basic parameter values in the parametric analysis were
v 2z =
c=0.5 ,B=10 , B, =10° , T=0=1] (IV-3)

The constraint parameters, \-: and T; , were modified for this para-

metric study to reflect only the physical parameters of the system:

X - K C°1 Tz Ko C;L

Ky= 2T T s T =g e
‘ ﬁ: Pw-y'\.R: )—K?‘ B2 })ur,p'\ R

(Iv-4)

In terms of these new constraint parameters, the basic parameter values defined

by (IV-3) can now be given as
- - — % — o~ _
o=0.5 B3,= 1o ) B.= 10 y Ki=0, K,=O0 (IV-5)

and the most significant ranges for K, and Ko for Bz = 102 are

1<k, € 102 ) Ke < C;uo"" (IV-6)

Figures 11 to 22 give the results of the parametric analysis in terms of

wave speeds, attenuation coefficients and transmission factors. The transmission
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factor is defined as exp(-9XN/R,) which represents the ratio of the amplitude
of a sinusoidal wave propagating over a distance of one wavelength to its initial
value. Results for infinite constraints corresponding to the limiting solutions
given in the previous section are also shown for comparison.

In general, the wave speed for the first type of waves increases mono-
tonically with o< from a small value at low Reynolds numbers and approaches a
finite limiting value. For weak radial constraint, it is relatively constant for "‘\Q.?q
and >3 , Whenever the condition ( A,/R, ) =2B,.M(C, /¢c,) >> 1 is
satisfied, the parameters (3, and @, have little effect on this wave speed, and a
change in Poisson's ratio, o~ , has no significant effect at large Reynolds numbers.
Conditions (III-99) and (IM-110) indicate that only the first type of waves exists for
infinite values of either constraint. For arbitrary values of Ky within the com-
plete range of axial constraint ( 0<%, go0), the solution deviates at most by 15%
from that corresponding to the basic values at all Reynolds numbers. However,
variations in the radial constraint K produce marked changes particularly in
the range 1€, < |03.

Except for cases with large radial constraints, the wave speed for the
second type of waves is relatively constant at low Reynolds numbers and increases
monotonically with increasing Reynolds number. However, changes in Poisson's
ratio or ﬁ, produce much larger effects on the speed of this type of wave, while
a variation in (Sz_again has a negligible effect. The speed approaches infinity as either
constraint parameter becomes unbounded, moreover in the presence of a radial con~
straint with K,> 103the wave speed is virtually independent of the Reynolds number.

The attenuation coefficient for the first type of waves, S, , decreases mon-
otonically with increasing Reynolds number and consequently the transmission factor
exp(- 8, N /R, ), increases monotonically. A change in Reynolds number may
cause very large variations in both quantities. The parameter [, has no effect
on either quantity but a variation in Poisson's ratio produces a larger relative change
(up to 35%) in P, and in the transmission factor. Over the entire Reynolds number
range S\ is inversely proportional to {5+ while the transmission factor is in-
dependent of @1. . At this point it should be recalled that according to Eq. (III-49)
the wave length is proportional to 3, since the wave speed <, is independent of

ﬁ,_ . This implies that the transmission factor is not affected by B2 . Variations
in the radial constraint ( ¢ <K, so ) may change &, and the transmission
factor by an order of magnitude. Forhigh Reynolds number a change in the
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axial constraint (O €K, < o) can alter S. by as much as 50%, while for low
Reynolds numbers no noticable effect is produced.

For all cases with weak constraints the attenuation factor for the second
type of waves, 82 , first increases with increasing Reynolds number, attains a
maximum for o 2 2.8 or Re 8 and then decreases monotonically. Except for
very low Reynolds numbers, B, can have a significant effect on the transmission
factor. Again, the attenuation coefficient is inversely proportional to ﬁz_ while
the transmission factor has a negligible dependence on Bz . At low Reynolds

numbers, Sz decreases and the transmission factor increases with increasing
radial constraint. For very strong radial constraints this behavior is predicted
for the entire Reynolds number range. With increasing K, the attenuation coef-
ficient increases and the transmission factor decreases. For K, >,$x|o"’, the
transmission factor becomes negligible,
Results for the mode shape parameters, M, to Ma, are shown on

Figures 23 to 38. M,' , the mode shape parameter for the radial displacement of
the first type of waves, exhibits only a mild dependence upon the Reynolds number,
Poisson's ratio and f-”. . Furthermore it is inversely proportional to the square
of ﬁz . M, , the mode shape parameter for the radial displacement for the
second type of waves first decreases rapidly, attains a minimum and then increases
with increasing Reynolds number, This parameter varies significantly with Poisson's
ratio for all Reynolds numbers. It changes noticeably with {3, at high Reynolds
numbers, and is inversely proportional to the square of ﬁ-._ fof the entire Reynolds
number range, In the absence of radial and axial constraints, M, is larger than

M, at small Reynolds numbers, but the reverse is true at larger Reynolds num-
bers. With increasing K, , M, decreases rapidly ifrespective of the Reynolds
number, while My decreases rapidly first only at low Reynolds numbers and
for all Reynolds numbers when X, = 103 . With increasing axial constraint,

M, decreases at large Reynolds number and approaches asymptotically a finite
limit value while at lafge Reynolds number, M, first decreases with Kz ,
obtains a minimum and then increases.

The mode shape parameters far axial displacement, M; for waves of

the first type and Mq for waves of the second type exhibit completely different
parametric variations, At low Reynolds number, M3 increases rapidly while

M.,, decreases (for O = 0.5) rapidly with increasing Reynolds number. At

larger Reynolds number both are relatively independent of the Reynolds number,
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however, My is in general much larger than M3 . (3, has no significant effect
on My but M, shows a relatively large increase with (3, at large Reynolds
number. Both M3 and My are inversely proportional to (3. wherever

MRo >> 1. My increases rapidly with decreasing Poisson's ratio at low
Reynolds numbers and conversely decreases with decreasing Poisson's ratio at
large Reynolds numbers. My shows exactly the opposite behavior with Poisson's
ratio. An increase in ¥, produces a rapid increase in M4 at low Reynolds
number while for large Reynolds numbers M3 first decreases and then increases
at higher values for %, . On the other hand an increase in K, causesa
decrease in My for all Reynolds numbers and an increase in W, produces an
increase in My at low Reynolds numbers, but for large Reynolds numbers ™My
first increases and then decreases., ™, decreases with W for the entire
range of Reynolds numbers.

’f‘he mode shape parameters for fluid flow rate, Mg for waves of the
first type and ™. for waves of the second type, also show markedly different
behavior. Mg has no noticeable dependence on (3, or Poisson's ratio. But
with increasing Reynolds number Mg first noticeably increases and then approaches
asymptotically a limit value. My is inversely proportional to (», . The
trends of M+ with 3, , o and >+ are identical to those of M, . While

M5 is smaller than M for small Reynolds numbers the reverse is true at
large Reynolds numbers. The axial constraint has no effect on Ms‘. but produces
effects on M\ which are similar to the effects on ™My . An increase in K,
causes a decrease of My and also a decrease of ™M, at low Reynolds numbers.
However, for large radial constraints, M, decreases with K, but is virtually
independent of the Reynolds numbers.

The mode shape parameters for axial fluid velocity on the axis, M7y
for waves of the first type and Ms for waves of the second type, have the same
trends as the corresponding mode shape parameters for the fluid rate M and

M, . The only exception is the occurrence of a relative maximum~minima at
moderate Reynolds numbers.

Figures 39 to 42 illustrate parametric variations of the phase angles
between radial wall displacement and pressure, ¢, for waves of the first type
and (b,_ for waves of the second type. With increasing Reynolds numbers,
Figures 39 demonstrates that ¢| increases from zero, assumes a maximum for
{2 1.5, and then decreases. (5—,__ has no apparent effect on ¢ o while ﬁ,
and particularly a change in Poisson's ratio can produce large relative variations.
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However, in the absence of constraints; d’, is small, As can be seen from
Figure 40, ¢, approaches zero with increasing axial constraint for all Reynolds
numbers, but with increasing radial constraint, the maximum of d?, increases
slightly and shifts to larger Reynolds numbers. For large radial constraints the
small phase lead becomes a phase lag with a pronounced minimum at larger
Reynolds numbers. ,

The phase anglé ¢,_ displayed in Figures 41 and 42 is very sensitive to
all parameters. In general, ¢, increases, assumes a maximum, and when Kz
is small decreases to zero as RQ increases. As shown in Figure 41, large
variations in ¢z are predicted for changes in 8, at low Reynolds numbers and
for changes in B, at high Reynélds numbers. Also, a change in Poisson's ratio
produces large variations in (b,_ for all Reynolds numbers but the most interesting
effect is the shift from &, = 90° to ¢, = 0° atlow Reyndld's numbers for
all values of Poisson's ratio except those near 0.5. According to Figure 42 an
increase of ‘K, causes a marked increase of d).,_ that is particularly noticeable
at large Reynolds numbers. An increase in K, generally produces a decrease
in ¢z .

The graphs in Figures 43 to 46 portray phase angles between axial wall
displacement and pressure, d)3 for the first type of waves and qu for the
second type. Except for the case of large radial constraints and small @ 2 (
for which )\‘ / R, € D), ¢3 decreases in Figures 43 and 44 monotonically to
~900 with increasing Ry. The changes in ¢~ considered in Figure 43 produce
large variations in ¢3 and shifts the low Reynolds number value from d>3= 4ds°
to 15°, Figure 44 demonstrates that an increase in Wy has little effect on d)B
while minute changes in K, cause a large shift in ¢3 at low Reynolds numbers.

From Figures 45 and 46 it follows that, except for large radial constraints
or small B, , d)q generally increases. As can be seen in Figure 45, d),,, becomes
independent of ﬂ>\ at la_.rge Reynolds numbers. However (5-,_ affects (bq sig-
nificantly when $, and Rg are small. Changes in O~ from 0.5 to 0. 25 shift the
low Reynolds number values from (Pq =0 to ¢q=- 90"and produce significant vari-
ations in ¢.,, for all but very large Reynolds numbers. The graphs in Figure 46
demonstrate that an increase in kz produces an increase in ¢‘l , particularly
at large Reynolds numbers. Likewise, K, can alter ¢q markedly,

The phase angles between fluid flow rate and pressure, d)‘

for waves of the first type and (b" for waves of the
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second type, are shown on Figures 47 to 50, Without external constraint, ¢3_
decreases in Figure 47 from 45° to 0° with increasing Rq ; while B, and B2
have no apparent effect on ¢S and Poisson's ratio produces only a small change
in ¢g. From Figure 48 it follows that an arbitrary variation in K, alters Qg
less than 15%. Also, an increase in K, produces little effect on ¢, at low
Reynolds number, but a significant increase for moderate Re values and a large
decrease in ¢; at large Reynolds numbers. The plots of ¢5 in Figures 49 and
50 exhibit the same trends as those for ¢,_ in Figures 41 and 42. This implies
that for the second type of waves the phase angles between fluid flow rate and
pressure show a similar parametric dependence as the phase angles between the
radial displacement and the pressure,

Figures 51 to 54 display the phase angles between axial fluid velocity on
the axis and pressure, ¢., for waves of the first type and d’a for waves of the
second type. According to the graphs in Figure 51 ¢7 decreases generally from
450 with increasing Ra attains a minimum for«x£ and then approaches gradually
to zero. Variationsin 3, and 3.,_ have no apparent effect on dl., but a
decrease in o~ produces a decrease in (b., at moderate Rq. As shown in
Figure 52 an increase in K, causes a minute decrease in d)-, near the minimum
while an increase in K, shifts the minimum to smaller values of ®, and to
slightly larger Reynolds numbers.

From Figure 53 it follows that for the basic parametric case, ¢ 8 decreases
from 90°, attains a minimum for o2 7 or Rg% 49, a maximum for =10 or
Rg‘g:o" ,» another minimum for o<®|S§ or Rex22s; and finally approaches zero for
very large Reynolds numbers. Changes in ﬁ‘ produce large relative variations
in ¢>" at large Reynolds numbers. For small Ry a decrease in (3, causes a
significant increase in ¢a but this effect is somewhat weaker when ( Az/ R, )>>1.
A decrease in 0" again shifts the low Reynolds value from 90° to 0° and produces
a significant variation in ¢‘ except for & »}o. According to Figure 54 ¢3 is
strongly dependent on K, for & > | andon K, for o< <io,

The first type of waves has larger axial displacements for the parametric
values defining the basic parametric case. However, from the results in Figures
8, 23 and 27 it follows that M‘ is inversely proportional to (3:_ and Ma is in-
versely proportional to @-,. Therefore, the ratio of the radial displacement to
the axial displacement, (M,/M’), must become greater than one at a certain value
of B2 . This change in the character of the mode shape is also observed in the

inviscid limit and since (37_ is inversely proportional to the frequency, it implies
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that the first type of waves exhibit predominantly axial displacements at low
frequencies (large @, ) and predominantly radial displacements at high frequencies
(small @3, ). The same behavior was predicted for inviscid fluids by Maxwell )

, For a given pressure variation the constraints may cause some inter-
esting effects. With an increasing radial constraint the wave speed, attenuation,
and axial displacements for the first type of waves are generally increasing while
radial displacements, mass flow rate and axial fluid veclocity decrease. On the
other hand, the second type of waves exhibit an increase in wave speed and a
decrease in attenuation, wall displacement, fluid mass flow, and axial fluid vel-
ocity on the axis with increasing radial constraint. An increase in axial constraint
causes an increase in speed and attenuation up to limiting values and a decrease in
radial displacement, fluid mass flow and axial fluid velocity on the axis and axial
displacement for the first type of waves. For the second type of waves the wave
speed and attenuation increase,

B. Fluid Velocity Profiles
If only the incident wave of the first type occurs, then accordlng to (III-34)
and (III—35)

¢ B
w2 = - B [S,- A )] praye

]

' I TiY '4 s
u, (n,2,t)= PwRo s,[:z -).(t'v"*" -3 ..] £E)

These two equations can also be written in the form

2t ,
u:’((j;,a,-t) = LI Pr=< & )- s, 1 /0-5s,) (av-7)
,-3/2
(’A : 5= Bl (M<%)-24es) @

Likewise, if only the incident wave of the second type occurs,

wy a2 ,t) = ‘m, r‘ 1Se- (™= )] p3)t)
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2T,

{ Bey &0

ieyepm o, BLE )% gl ot

or
watn,2,t) _ 24 _
5,20 = L% R) -5.1/0-5.) av-9
U (n,2)t)
. = - IV-10
w;'to,,t) r".oc 'ﬁ. , ]/(l S-) (IV-10)

For these simple waves, the expressions (IV-~T7) to (IV-8) are plotted in

Figures 55 to 58 for the basic case in the parametric analysis ( @g-= 0.5, (3, = 10,

B, = 102, K= 0 =Kp) and three different values for o< which range from very
small Reynolds numbers to relatively large Reynolds numbers. The axial velocity
for the waves of the first type is generally largest in the center of the tube but the
difference between the magnitudes of the axial velcoity on the axis and that on the
wall decreases with increasing Reynolds number. The magnitude of the radial
velocity for the waves of the first type is largest near the tube wall, and its vari-
ations with n is greatest for low Reynolds numbers. With increasing Reynolds
number the phase difference between the axial velocity at the tube wall and that on
the tube axis decreases.

The most significant observation for the waves of the second type is that
the change in magnitude and phase of the axial velocity across the tube is neg-
ligible at low Reynolds numbers. This absence of an appreciable relative velocity
or shear at low Reynolds numbers accounts for the small attenuation of waves of
the second type at low Reynolds numbers. At higher Reynolds numbers, the
magnitude of the axial velocity at the tube wall is larger than at the axis. The
difference in magnitude and phase for the axial velocity on the tube axis and on
the tube wall increases with increasing Reynolds number. For the radial velocity
the variation in the magnitude across the tube is greatest and the difference in
phase is least at low Reynolds numbers.,

C. Significance of the Constraint Parameters

Some information regarding the order of magnitude of the external
constraint parameters for the cariovascular system can be obtained by consider-
ing the surrounding medium to be isotropic, perfectly elastic and incompressible.
In such a case the stresses acting on the external surface of the artery can be

approximated by the relations ,
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T,

et

K. = 1, = E,_ %

et ™ S

Ke S ¥ Tn..z = ‘Z_E-m(ﬁ + T%)

in which the orders of magm"cude of the derivatives are given by

i
‘é ('ﬁ)) Y (%) ,3; 0(;\")

Therefore,

K.,= 0(E,. /Rr.)

and
K.= O( T i"‘E’-fﬁo: 0[“2 3 ]

With these results and the definitions of r: . f:, 7{', and K, , one
can write

P = o(zp“’ o g Pz)

Ky = o[%';—’ E%"’ ﬁzk‘% -H)l

The lowest order for Tz and K= is obtained for (€/¢)<¢<1 and

m),“o. (.Pw- s (5\ Pz ) )QQ.)L,O' = ol Pw~ E/m Py >)

It has been shown that the minimum value for (3, at long wave lengths is of
order 1, Besides this, '(pw_/l) )= 0(1) and (3, = 0(10) and, therefore, the
lowest order of magnitude for the constraint parameter is

[, = o(ze0 &)=k, (). = 0(ioo =) = (2 )

In the parametric analysis for the inviscid limit ( o¢~» «s) and for the

very viscous fluid limit (e-o0), it was found that [}, = 0(1) can cause dramatic
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changes in the propagation characteristics of the second type of wave while

I =O(1) has little effect upon waves of the first type. Also, it was shown
that radial constraints only affected either type of waves when N = O(loq) .

For (Em/E)<< 10'3, {‘K')L.a. = Q—: )L.°.< <0(o.2), and

(Ke) o= =(12 ),_ o, << alo 1) waves of the first and second type should not be
S1gn1f1cant1y affected. With (Em/E)7 107% (K ) Lo~ (r) >o0(2)
and (‘K-,,) = ( r') > O(1) the waves of the second type should be rapidly
attenuated L1kew1se ®waves of the first type are unaffected unless (Em/E)70(0).

H

Therefore, with such a surrounding medium, the modulus of elasticity must be
at least three orders of magnitude less than that of the vessel wall in order to
produce negligible constraint effects, and it must be at least two orders of
magnitude greater than that of the vessel wall in order to effect significantly the
waves of the first type.

D. Application of this Analysis

1) General Comments

To apply the analysis presented in the preceeding sections to specific
cases, the independent parameters X, B, , Ba, o0 , K, and K
must be prescribed. The wave propagation characteristics (wave speeds,
attenuation factors, and mode shapes) can then be determined from the results
given in the parametric analysis. The four arbitrary constants E R P s

P3 , and P.( appearing in the general solution are determined by satisfying
four prescribed linear conditions imposed on the dependent variables.

In the past many analyses have considered only the first type of waves
using the solution given by Womersley 102 The analysis presented in this report
allows for a separate study of each type of waves as well as for the general
solution involving both types of waves. Besides this, it takes into account the

effects of a distributed radial constraint in addition to those of a distributed
axial constraint introduced by Womersleylo).

This section will illustrate the possible errors induced by considering

merely one type of waves and by neglecting reflected waves in the solution of a
realistic problem. To this end the solutions corresponding to each type of waves
will be examined separately and then compared with that involving both types of
waves.

By considering only the first or radial type of waves (93 o= =P“'a)’

44



Equations (III-31) and (III-34) to (III-39) reduce to

wit- ?‘,) -3,2R, cwt+ ?‘,) S8R,
azt= R, e “e +Re “e” (IV-11)

o wit-%) _s,m, ‘w(t+d ) 5,2/R,
L P B 0 B I (vay

Re
QlZt)= @

l‘&q
M|¢ i‘&l-¢ )
EK(:z’-t)zpw" Rk, ‘P&('Zb't) a(i‘ it 'E'»"" Q, C’Déi‘,t) (IV-13)

. ™M ((div" bs)
welo 2,t) = pge —-13‘ e Qal2,t) (IV-14)

The same equations yield for the second type of waves ( P. A= O= 2, A) :

wit-E) -2/, wttE ) saak,
palet)= B, & “e +R, e E‘)a : (IV-15)

Ro ¥ ' (‘t‘%‘)-. . "
QA(-EJ{:): ] M‘é¢bLP“QCw 'C'a Sz‘?/ﬂo_P““a‘w(t"’%")as %o]

(IV-16)
e bo-by)
ia(?ﬁ ‘()-Pth 495(%,'&) ‘; (%J‘U }NQR. M: - én(zit) (IV-17)
)
%(O,‘Z,t)af_R": 2%8 ‘(»d’g ¢ )QA (% 'f) (IV-18)

For each type of waves these results show that the radial wall displacement is

proportional to the pressure and that the axial wall displacement and fluid

velocity on the axis are both proportional to the instantaneous mass flow. There-

fore, when only one type of waves and their reflections are admitted to the
solution, one may not prescribe independent conditions on pressure and on the

radial wall displacements at the same axial location. Similarly it is not
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permissible to introduce independent conditions on the instantaneous mass flow,
the axial wall displacement and the fluid velocity on the axis at a given axial
location. For the solutions given above (_ Equations (IV-11) to (IV-14) or
(IV-15) to (IV—18) } , only two conditions are necessary fo specify the arbitrary
constants.

Further specialization to only one wave of the first type leads to
R=0=P,=0 for a wave travelling in the - & direction and P.=P=Py=0
for a wave travelling in the + 2 direction. Similarly a restriction to one wave
of the second type implies P= 2= P3=o for a wave travelling in the - &
direction and P,= 2. =Py=0 for a wave travelling in the + & direction. For
such single wave solution the instantaneous mass flow, the wall displacements
and the fluid velocity on the axis are all proportional to the pressure and, there-
fore, only one boundary condition is necessary to determine the motion of the
system.,

It is important to note that in the past all experimental investigations
have attempted to interpret data in terms of only the first type of waves and in most
cases the reflected waves (waves travelling in the - #Z direction) were also
neglected. However, in several of these investigations, the experimental
apparatus described introduces incompatibilities with the solution that were con-
sidered for the wave motion. For example, an electromagnetic flowmeter
restricts the radial wall displacement and according to (IV-13) and (IV-17) the
pressure at that location will be affected.

The parametric analysis demonstrated that the wave propagation
characteristics of the second type of waves are more sensitive to physical and
geometric system parameters than those of the first type of waves., Therefore,
it is particularly desirable to acquire experimental data on the second type of
waves if the physical parameters are to be determined from wave transmission
characteristics.

In order to document these comments, four sample calculations are
given. The first three are intended to illustrate the possible errors that may
evolve by interpreting data for pressure and instantaneous mass flow in terms
of only the first type of waves. Theintention of the last sample calculation is
to investigate the possibility of using simple constraints to excite the second type

of waves.

46



2) Sample Calculation 1
As mentioned previously, in several experiments, the motion of the

system at an arbitrary axial station is calculated from measurements of pressure
and possibly fluid instantaneous mass flow at a given location, defined here by
2= 0, using only the first type of waves. The pressure and instantaneous

mass flow at 2=0 represent boundary conditions which can be written in the
form Pployt) = PLoyt)  and Gelo,t) = @lo)€) . Utilizing those
boundary conditions in (IV-11) and (IV-12) to evaluate the arbitrary constants

Pa and P,g one obtains

2 P“('E !‘f.) w -i0s Q(O,'t) cwit- %.) ~-Si1%/Ro
wt,P(O,‘l) = \'\'l' ?\‘,N\‘Q’ P\o,i) c c

& -Cd"' Qto,t) ‘w\t-" ) SrZ/Ra -
*l- Tmg @ p(o,‘t)-\ (V=19)

TOEt e ) | - B) S
@.cth(O,t) —-— ‘+ R'Msea JP(.OJ*) e

‘.\_ -cbs Qo) ‘l &W(«'H'%) Sl%,} (O,t)&, ids
- R.Mg & £lo,t) Q(,o-t)“’ ¥

(IV-20)

From these relations it follows that the presence of merely one wave travelling
in the + Z direction (incident wave) is only possible if the measured mass flow
and pressure satisfy the condition Q(o,t)= %}’ Mg ¢.“ ‘b‘,p(o ¢) in which
Mg and ¢s are exclusively defined by the system parameters and frequency
through o, (5, » B> Vi or K, and ¥ or &, . Likewise, there can
only be a single wave travelling in the - & direction (reflected wave) if
Quot)z - % M,z‘bﬁca,t} For all other values of Q(o,t) /plo,¢)  both

incident and reflected waves must be present.
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When only waves of the second or axial type are present, Equations
(IV-15) and (IV 16) together with the boundary conditions @,{0,t)= plo,t)
and  @ulot)= Go,?) yield

Z Palz,t) -‘éLQ(O t) Cw({-% ) ~-322R,
3 ’ 1
o =L S ) e
-id
L[ e QQ(O, 0 cwlt+ %JQS*»*/N (av-21)
R.M, plot)

2Qa(2,t) _ { &;_e.j&’ Qo) (wit~ a)z- S22,

@_cwto (.Oft ) - Ro ML P(O‘ t)

(e

_ wafub‘ Qot) 7 (witt t,,) sp‘f/ﬂo} P("'UR,

WaE. Senle e (Qup w Mt -2
In this case only the incident wave is present if Q(O t) /@(.O,t)" R M. e “b‘
and only the reflected wave if Q(O,t)/p(o t)=- Mo e b . For all

other values of Q0,t)/plojt) both waves must be present. (Note that My
and d)‘ are determined by the system parameters and the frequency).
3) Sample Calculation 2

In this sample calculation it will be shown that there can be an appreciable

difference between the values for the pressure at a given axial location as pre-
dicted by the solution representing only the first type of waves and by the general
solution if a discrete axial and/or radial displacement constraint is imposed on
the vessel. The pressure and fluid flow rate at 2=o are assumed to be

the same in both solutions. Then, the pressure and motion of the system are
given by (IV-13), (IV-14), (IV-19) and (IV-20) when only the first type of waves
is assumed to be present. At =0  the following arbitrary and independent

displacement constraints are applied:
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R0/ lo)= M So)/Selot) = (Iv-23)

where Wy} and 1T, are arbitrary constants.
With (IV-23) and the conditions on pressure and fluid flow rate at Z=¢
one obtains from (III-31) and (IM-36) to (III 38)

m (0,t)
P,= -i_,p(ot){(l‘ —-S-',)-\-(\ TS’ S )Ro"’\s 2(2:&) } (IV-24)

-5
=1 _=moy \ \=Te we T Qlyu
B. Z-P(OJ‘U{(I "S:) ( 53 S )RoMs' po,t) i (IV-25)
és
) =M =Mz we_‘ Q(o,t)
= 5 plo { —<7 + X ) _
B=zplot) ] S, S-S, R.Ms ,p(0,t) } (IV-26)
~cé
=M ﬂ'o - we Vs (0,t)
R= (0 t)‘ —— Q@ (ot ‘ IV-27
P ) ST:-S,B RoMy plo,t) ( )

z x(‘t‘z é,) S/_ M. t‘(*‘c‘é:)

where S = S Ndvyl-2 , 5= ™,e (1V-28)

It should be noted that with m =} = [T,  these constants P to Py reduce
to the values corresponding to the first type of waves. Also, for WM =0 |,
there is no radial displacement possible at £=0O and, for My=o0 , no
axial displacement can develop at € =0

For the parameter values
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= — = T = =

o
and E'e—: ) Q_(._O_,_’t_) = IvV-29
Ro MS' .P ‘O’f ) - l ( )

as a condition for only one radial wave travelling in the + < direction, the
constants R to Py as defined by Equations (IV-24) to (IV-28) were evaluated
and substituted into the expressions (III 31) and (III-38) for the pressure and
mass flow described by the general solution. The pressure and mass flow for
the corresponding radial wave were obtained from (IV —19) and (IV-20). The
results are given in the form of the relative errors (p-pa)/p& and (Q-Q&)/QK
and are plotted in Figures 59 and 60 for various values of T, and 11, . From
Figure 59 it follows that a rigid displacement constraint produces an error in
the magnitude of the mass flow which increases with & and is of the order of
20%at 2= 20 Ry . The magnitude of the relative error in the mass flow
is more significant than that for the pressure when only a radial constraint
is present, However, in either case, the radial constraint has a more pro-
nounced effect.

4) Sample Calculation 3

In the previous example both discrete displacement constraints were
applied at the axial location where also the pressure and mass flow were
prescribed. Often the vessel segment of interest is subjected to constraints
at more than one location. For example, one may have electromagnetic flow
meters at both ends of the segment exerting radial constraints. To simulate
such a situation, a model is considered in which the pressure and mass flow at
the upstream end of the tube are prescribed, and radial constraints are applied

at both ends of the tube. The constraints are again expressed in the form:

€ot) /g lot)=my = TAL, &V ¥ (L)t) (v-30)

By specifying the pressure and mass flow at €=0 , one obtains from

(IV-19) and (IV-20)
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Prll,t) cwlx, s, LR,
plot) € e = L+

—c'é
‘wl /£, R we ° o, t)

+zle ~ R, My plo,t) (IV-31)
QrllLt) w Go,t) QWL SR czwl e, QZS,L /Ro
Qo,t) Ro plojt) -

| ~cds
wwle, 2S,LR,ywe 4 Qlo,t)
+L[3-e° ' o st -
zl3-e ¢ ReM4 plo,t) (IV-32)

and with (IV-30) the general solution for pressure and mass flow can also be
determined. The relative error for pressure and mass flow in this case are

given by

~cwlc, -3,L4 /
‘_,PKL,‘t)‘JPKKL,{)]/[p(O,t)(\‘IB)@ R R"1'~‘-P.

L_L
’ iZwL/coalle/p“’_’_ wa(-é" C,,) Q(S‘- Sz)i L p_sl

+ P e

? {ZwL/C, 7-$|L/Ro
e 1

+ P e (IV-33)

o -wl 2, -$ LA, ,
[Q(L’t)-Q\l&L)“]/ %.'J P(O;U(I'WB)@ ‘ e 1 = P
’ L
e e 4e G

r cwwl /A aZSn LRy M, C(¢a"¢r)

-P e e (IV-34)
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e (IV-35)
where P Pt Pa RaMs  p(©,)
| tbs 0,t) |
f we el (IV-36)
P = Py P“"- Re Ms  pLoyt)
~cbs
we Q@ (o)t) (IV-37)
P P‘S\ P32. ReMy P(oit)
o bs
QLo t) _
Rr= Pt P 5 2 M, P00,E) (IV-38)

2wl 25, LR,
Pn_=-“i{ -‘.Q‘ (VA *

—

;w( E' ) (5. S"D).Ro M Mo (e &+ de-ds) wl/a 25/,
-1le Tvills ™ e

- ,]" Y‘ (IV-39)

(twl /Ca z.S,_,L/h, ‘w(c, c,.) Ms- d%‘b‘)
P“.—.—-ZP‘.L{ +[‘%( * e ) (
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Ms _ds-de)
Pa=- B, Pae= -Pa T\"'\s; Q,‘( e Pav (IV-42)

)

¢ = z ¢ '&"'b) ¢ ~G
Y N\:.@(d’c é:)}/tl__n_/\ﬁ‘a(é )]im_m_,;e(%éa)

Pu-{PiLi- e -4
By = -y +L1- n'_:\a,_\ Q«'sz-tb.)]"
(IV-44)
Results for
X=4, B3=10, B,=10 , K)=O0=Ka , o=05 (IV 45)
and %zqecﬁ) %&'f\,—:) )5—<§>,_= O ano 186° (IV-46)

are shown on Figures 61 and 62. Note that with ('b"dJ,- = Q0 and ;’—:Ms-_- |,
equations (IV-31) and (IV-32) predict the first type travelling in the + 2 direction,
while (- d),s' = 180° gives a wave travelling in the - Z direction. The
results in Figures 61 and 62 display the relative errors for pressure and mass
flow. The phase of these errors is in the neighborhood of 90°. It is apparent
that in this case the rélative errors are much larger than in Sample Calculation
2.

A comparison of the variations of pressure and mass flow at an axial
location as predicted by the first type of wave in the absence of axial constraints
with those obtained from the general solution satisfying the radial constraints

is also of interest, Figure 63 shows the results for
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calculated from (IV-31) to (IV-34) by using the parameters given in (IV-45)
together with

L o , . wt  wa - -
R.= 30, pot)=Re@ ™ = =1 B-ds=0, M=o

It is evident that the approximate solution in the form of the first type of waves
has the same basic pattern as the general solution. However, there is a
considerable phase difference between them. Also, the approximate solution
overestimates the magnitude of the mass flow by about 12%.

5) Sample Calculation 4

The purpose of this example is to investigate the generation of waves of
the second type by simple discrete displacement constraints applied to a tube
of given length. The results in the previous two examples showed that discrete
radial constraints could produce significant changes in pressure and mass flow
as predicted by the terms of only the first type of waves. Therefore, the type
of constraints introduced in Sample Calculation 3 may be considered a device
to generate waves of the second type. A reasonable measure for the effectiveness
of exciting the second type of waves is the difference in the arbitrary constants

P, &, Py » Py, as defined by the general solution satisfying all four

boundary conditions and those corresponding to the approximate solution involving
only the second type of waves and complying with the pressure and mass flow
boundary condition at 2=¢ .

The solution in terms of the second type of waves is given by (IV-15) to
(IV-18), (IV-21) and (IV-22), where the constants in (IV~15) and (IV-16) are

: - (3
; ) _~wt w e (0,t) -
PIA= O) P3“= E@‘ ,P(o‘t) [l* Eo M, G:)(o))-(-) -.\ (v-47)
) siwt w ¢ *qo,u
Pa= 0, Pn=t&" " plo,t) - &, W, PO (IV-48)
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Substituting the pressure and mass flow conditions at 2=0 together with

T(o,t) : and L)
o= m= CONSTANT TR,

into (III-31), (III-36) and (II-38) one obtains
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M ((ds- &
P = Ff’\i e ) Pa (IV-59)

Ms  ((bs-b,)
Be= ™, 2 ° © Pa (IV-60)

P.,"::{ N,.,\\iq—‘(% -0 ) _hM, ih-b2) Wl('&‘ - ....) G-S, )lo [l

g, 2% (bs-db)  awlsc
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The difference in the arbitrary constraints are nondimensionalized with respect

to the magnitude of the pressure at 2=o and are given in Figures 64 and 65.

= - - - T
°<-“'() 0"“0;5) B|""o) ﬁz_"'o )k":O: 7‘{1_ ) \-r": ﬂ'3
r | (axial wave in + 2 dir.)
P
we QW) ¢ lo® : L :
and RoM¢, po)t) = 9 0.847 @ (radial wave in + Z dir.)

0,847 e e (radial wave in - 2 dir.)

where the comments in parentheses indicate the wave type which would have the
corresponding pressure-flow relationship at =0 . It is obvious that the
differences in the arbitrary constants are zero for T,= } which is the
condition that the radial displacements at =0 and #=UL. are those associated
with a wave of the second type.

The results of this and the previous two sample calculations demonstrate

that any application of discrete constraints induces the second type of waves.
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V. COMPARISON OF ANALYSIS WITH EXPERIMENTAL RESULTS
A. Elastic Wall Analytical Results
1) Experimental Results of Van CittersM). The experimental results

of Van Citters are of particular interest since they corroborate the existence
and some of the propagation characteristics of the second type of waves. In
these experiments a Penrose tube of 100 cm length was connected to rigid tubing
at both ends. The tube was filled with water or glycerin. At one end of the

tube a step pressure pulse was produced and near the other end the tube was

instrumented to measure pressure and axial and radial wall displacements.

From oscillograph recordings of the disturbances in pressure and wall
displacements, Van Citters concluded that two types of waves were generated
whose speeds were approximately 6m/sec. and 30 m/sec. when the tube was
filled with water. The pressure and radial wall displacement appeared to travel
at the lowest speed while the axial wall displacement travelled at the faster speed.
On the basis of these observations, it was concluded that two independent waves
occur; a longitudinal wave with strong axial displacements and a pressure wave
accompanied by large radial wall displacements. Furthermore, it was shown
that a manual griping of the tube, which simulated a distributed external con-
straint, produces essentially a complete attenuation of the longitudinal waves.
Besides this the amplitude of the longitudinal waves was reduced considerably
by substituting glycerin for water.

The results of the parametric analysis show that the magnitude of the
pressure variation associated with the second type of wave is much smaller
than that for the first type of wave. Consequently, the step pressure pulse
should excite primarily the first type of waves. However, Sample Calculations
2 and 3 demonstrated that the clamps holding the tube onto the rigid tubing will
require both types of waves to be generated. The exact character of the clamping
was not reported and, therefore, the relative strengths of the two types of waves
can not be determined.theoretically. But it is apparent from the oscillograph
recordings that the pressure fluctuations associated with the second type of
waves are much smaller than those for the first type of waves. A comparison
of the results on Figures 23 to 30 shows that the magnitude of the axial dis~
placements for the second type of waves can still be much larger than those for
the first type of waves, even though the magnitudes of the radial wall displacements

and pressure fluctuations are extremely small. The parametric analysis also
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demonstrated that the dissipation of the second type of waves is larger and
specifically predicts a large increase in the dissipation with a weak distributed
constraint (the manual gripping). Finally, the ratio of wave speeds (C</C, = 5)
is in agreement with the analytical predictions.

2) Experimental Results of Anliker, et al. 13). During the past two

years wave transmission experiments were conducted on anesthetized dogs.
Finite trains of small sinusoidal pressure waves were induced in the thoracic
aorta of mature mongrel dogs weighing between 20 and 40 kg. These waves were
generated by an electrically driven impactor which produced small indentation

of the vessel wall, The pressure signals had amplitudes that were generally less
than 5mm. Hg peak to peak., Typical results obtained in these experiments for
frequencies between 60 and 200 cps. are illustrated in Figures 66 and 67. From
Figure 66 it follows that the thoracic aorta is only mildly dispersive with respect
to pressure waves in this frequency range as predicted by the theoretical results
given in this analysis. The attenuation of such waves in the form of the amplitude
ratio A/A, as a function of the propagation distance measured in wave lengths

is shown in Figure 67. It was found that

A - 0.87 2/
o = @ (V-1)

independent of frequency. No waves of the second type were observed in these
experiments.

For the thoracic aorta and frequency between 60 and 200 cps, °<1=- % R:
is a large quantity. Therefore, the experimental results may be compared with
the limiting solution for large values of o& given in section III. Measurements
of the aorta showed that

R, = 4.4 mm. , h= .25 rmam,

The viscosity coefficient of the blood is assumed to be ¥=0,0% eMsee and
the vessel wall is considered incompressible ,0"=1/2 . As limiting phase

velocity for large frequencies the experiments yield
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C:o= S ™ /5EC.

Since the aorta was surgically exposed in this experiment the vessel is not
subjected to distributed constraints and, therefore, MN=o= T= . With these

values for C, , Re , and w one obtains

_182,5¢Ps 2 £ Vs
L = y X = Gouleces (V-2)

4 I
The quantities K, , {K-_:, and K, are real and positive in this case and hence
(III-33) and (III-53) yield

'~=L[Z.K‘U_K; + |-a-/2.)] LH‘ J::( 2'1

Co K' 3 <
ﬁzllk (Tky + T-:t';-/z_)] [H' zlﬁ%;

]
N K Va K
SI: iZ-K( H-R-s + \:—a-/r.. )] z.r.’i.a&

S. = S (ZHB—LC,) n‘K'r

Furthermore, the predicted damping of the sinusoidal waves is given by

N R TRz
%_ :a-SI%/Roz @-S;R’. N = @ ﬁ-()x\

°

(V-3)

This implies that A /A o is an exponential function proportional to &/ X, .
However, the coefficient of &/ Ay is not independent of frequency. Also,
calculations show that Ko 2 and e 38.0 at 60 cps. and, therefore, the
coefficient of /A isonly LKz o for = 60 cps. and

) y ﬁ::: G, 061 * p
decreases as the frequency increases.

From this result one may conclude that the viscosity of the blood can
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only account for a small fraction of the attenuation of the sinusoidal pressure
waves observed in the thoracic aorta of anesthetized dogs for frequencies between
60 and 200 cps. Also, since the aorta was exposed, any attenuation of the

waves due to the radiation of energy into the surrounding medium may be dis-
regarded. Therefore, the strohg attenuation of the sinusoidal pressure waves
must be attributed to damping mechanisms in the aorta wall,

B. Solution With Viscoelastic Wall and Large Reynolds Number

To account for the high attenuation of the pressure waves observed in the
experiments the vessel wall is now assumed to behave like a viscoelastic solid.
Moreover, since the frequencies of the sine waves generated in Reference 13
are generally above 20, the corresponding values for & may be considered as
large. For comparison, the analysis can, therefore, be restricted to large
Reynolds numbers.

According to the correspondence principle, the large Reynolds number
solution for viscoelastic walls can be obtained simply by replacing Young's
modulus E and Poisson's ratio 6~ in Equations (III-53) to (III-71) by their com-

plex counterparts

. wE
E=Eg+iwE, 30 =0x +(wW0oy, ,WHERE '€f<<\>>w°‘v (V-4)

In the resulting relations the quantities WEv/E 4, woy, and '/e< are
considered as small parameters, which allows the solutions for the wave speeds,

the attenuation factors, the mode shapes and phase angles to be written as:

Con K

T, B Ry L o, ) ﬁzp\r_("l' K"‘ (V-5)
E K

$,= 217, |- (B %8 4wy )+ = | (V-6)

= %JT.{-KS_ u'éE:v +C_way,) + Ker } (V-1)

Yz <
wEy Kar
2, A rr{ KB+“§; +CLwoy) + T oc (V-8)
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T +Cuwe )t 2= | (v-9)

s
o 7'%°=“{_K6' T =

)
N\z“b"{l\ {\+&(B+ Y +C wo—v)+ o = Kqe~ ﬁﬂ)} (V-10)

¢

(02 (l <)
M2 =LA {m(&- Y+C wa )t

CLIE S

i Kse-
M,e 3=—i('§‘l)ﬁ-\_ %H'" (k swEV‘* K spway ) Kse-1) +

K
+ e, S qun )t (s ) | (v-12)
e,y
M, @ --c.( A \"‘ {\ﬂ(kq. T " 4+ Kqq w0y K1) +
w€ O~ (K Kie
+ 'i_(rs- Y +C wO'v) ﬁ&( _?;:& KnF_PZKlGn_-’)) } (V-13)

- (Ka z
M,z‘b-—r\'r ‘H z(B+E +Qwa:,) e (K'“ K,.,__) } (V-14)

-¢)
Metes i i L8 +Cwa;)+(“ (5 &) [ was

~
M, @ &Y 1"‘,,{\»« 2B = 1cwe) + z“) K7r \ (V-16)
Mol s = JA. {\"' =(8. wEV +C.wa;) ﬂ;),,\ Ker \ (V-17)
where Cor hy € = 3'9.‘.‘.%.'5 (V-18)

6’7-\!. Rew ) Con = PRe ) (531.‘ \- o
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K =Bse0% - [£0-7) - Bse L-0) ]/(\- om/) (V-22)
\—\" =4
Keg = B, + —= ((‘ ; ) (V-23)
( K?.l. )1' '4(5:(“7“!-) Kl’F~
“Ni-epal T @, (- i) (V-24)
(-5)U- %)
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Gg = - TP (monra) . (V-28)
- G =T 20y Gsl
= ) ¥ Taa * Tiear (v-29)
)
Ksr= a7, (Gen +E£ G, ) (v-30)
K
_ G th TR W (-p)U-T)
e = - EpIY.¥ (V-31)
Gse+ + V Kan 2B3e (I-0n /) Ase
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K = f—r‘.—i—{i‘-&-l‘y‘f&_ k\"‘-‘l.)(3+ Lz'é";g)_Oi.U-ﬁ) (\" rl.) V-39
St Gsm+ ¥ Tiye, YAse (I-og./2)" ﬁ;,_ksgu"ai/z)("ai}) (V-32)

- .%_..a-'. U-T.)U“rz.)
Ase= By- U-T2) ey ralily ey gy (V-33)

\

Kae™ Age (Gen— & Tkae ) (V-34)

Kai - )

Gs “2',’ K Ry n. (,l-“)( TS
Kq,= - — (V-35)

I P ZAsp B (V\-0mr2)

_ Gs2- ¥k %! ~(l‘fz)&3+ -E—;‘:‘;) _ (‘-f")(l-f;_)ai e
Ko Gswn-— -!;_ﬁ(_sk YAsan(\=0m/e)"  Ase Pinli-cpaX-o%)

The remaining constants Kyn» K7r » Kgr » Kepand K'OK are obtained
from (III-67) to (II-71) by substituting €u and G for B and o

In many cases the parameter (\-Y}) / Psp  is small and the limiting
form of the solution defined by (V-4) to (V~36) is nearly unaffected by variations
in this parameter. By taking (\- r,)/B“_T- 0 the above solution reduces to:
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where WKgr and KqK are given by (V-30) and (V-34). These equations can
now be substituted into relations (V-5) to (V~15) to obtain the wave speeds,
attenuation, mode shapes and phase angles.

Both limiting solution forms given here exhibit no effects of the visco-

elastic properties upon the wave speeds. For elastic walls Womersley's analysis
produced the result

Co
= X-¢Y (V-52)

where the axial and spatial variation of all quantities is given by the function
2
2 cwit— & )
fl- ) =e '

and X and Y are tabulated in Womersley's report. Then, Ce / C, contains
both wave speed and attenuation factor. Taylor in Reference 17 has shown that

substitution of the relations in (V-4) into Womersley's solution yields

Cor.

o =(X-Y)-cwW) waere w:{%—”-’k +y0y (V53

or, in the form of the present analysis,
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ELASTIC A7, ELSTIC

where (C, /C, )e.LAS'm_ and (.S,)\,/pw)ams.n c are the quantities
for elastic walls. For large o< ., (S.)\,/M) << | , W << and
C, < wW
Con. ( ,)E‘_M . TERMS of soRR 2 (Sa Z e cosmic (V-56)
s 2 =15 %) +urr wW] + TR oe seone LwW (52
' Ro Y ®rs Rolewstic
oR (wW) (S‘ -ﬁ“)ﬁuhsnc (V-57)

Therefore, Taylor's analysis also shows little dependence of the wave speed on
the viscoelastic behaviour of the wall. Also, for large o Taylor's results
are of the same form as those given here, except that the coefficients of
Ev /E_,\ and o3, are constant in Taylor's analysis.

McDonald and Gessner in Reference 5 have shown that the data of

Bergel can be presented in a form utilizing the function W defined in (V -53).

wEv
S

TAN §y = 2w W (V-58)

where ¢5 is the viscoelastic parameter presented as experimental data by
Bergel.
C. Comparison of a Viscoelastic Damping Parameter Computed from
Anliker's Data with Previous Results

As in the comparison of experimental data with the results of the elastic
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wall analysis essential geometric and physical quantities are

< ' 1B2.5°ces
Co= Som /e, = goumen , Bue= — F
Since (;‘;_,‘& = z—.‘g @:& S>7.5 for frequencies less than 200 cps., the
quantity (1-Y)) /Bag. is small even for no distributed radial constraint
(“=0) . Making use of this fact in the limiting solution for large o< , one
obtains

S _ Cz 4,56
Cn--O.Q'I‘i(I-.‘,_E > ) Q =305 (1- = (V-58)
E )
SRl rouswa) + B | (V59
A E 4, 36
Sz—i:n{(wez_”'b,ua;) + = } (V-60)

As shown in (V-3), 9¢ )\(/ Reo is the attenuation coefficient, &( ,
introduced by Anliker in (V-1). From the experimental data it follows that
,Q..“.‘: 0.7 =9, )-‘afo . The substitution of this value into (V-59) yields

0.87 R
( Be ~ O\l4s oy ) = T @< (V=61)

as the viscoelasticity contribution to the attenuation coefficient, ,Q:.‘ . This
contribution can be interpreted as a viscoelastic damping parameter. It is
plotted in Figure 68 as a function of frequency together with the experimental
data obtained by Anliker et al. 13) and Berge14).

According to the data of Bergel, (‘bB is sufficiently small so that
(V-58) can be approximated by
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wW =% TaN d)s*-'%_fbs

It should be noted that Bergel's results are based on a different viscoelastic
model and on measurements conducted in the excised vessels. His viscoelastic
attentuation parameter increases with frequency.

For frequencies above 60 cps. the theoretically predicted variation

of the viscoelastic attentuation parameter is in good agreement with the experi-

mentally measured attenuation coefficient due to all sources of attenuation.
From relation (V-61) it follows that the damping contribution produced by the
viscosity of the blood is negligibly small at higher frequencies.

The viscoelastic parameter in (V-61) and the expression for 2wW in
(V-53) have the same coefficient for Ev/Egq_ but the coefficients for &3, are
of different sign and magnitude. The terms underlined in Equation (V-21) and
(V-39) define the coefficient of 03, in W/ . Additional data are necessary to
the individual values of €y , B , 0y and O .
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VI, CONCLUSIONS
The general solution of the boundary value problem posed in this
analysis produces two types of waves travelling along the axis of the vessel. The
first or slower type of waves has been studied extensively by Womersley and
others. Recently both types have been investigated by several authorss)’ 11),18), 18),

however, without considering the effects of constraints. The results of Atabek
and'Lewll), Womersleylo)

, and the present analysis are in good agreement

for corresponding values of the system parameters. The results presented here
for the large Reynolds number limit are also in good agreement with those of
Maxwell and Anliker3) for an inviscid fluid. :

In the present analysis as well as in those of Womersleylo) and Atabek
and Lewu), the fluid viscosity appears in the solutions only through the non-
dimensional parameter o< = ReyW/AIwhich is essentially the square root of an
unsteady Reynolds number. In the parametric study given here it was shown
that a variation in ©& produces the most significant changes in the wave
propagation characteristics for theslow waves when o <% and for the
fast waves when e« > | . The frequency appears not only in®&., but also in
the parameter B, = Co/{Row) which plays an important role in determining
the propagation characteristics of the fast waves, particularly when the parameter
o4 has a limiting effect.

The wave speed for the first type of waves in the presence of a weak
radial constraint increases monotonically with ©{ from zero at o<=¢ and
reaches asymptotically a value which differs by less than twenty per cent from
the Moens-Korteweg speed, Co . For the second type of waves and very small
values of o(, mild distributed external constraints (axial and/or radial) the
wave speed is relatively insensitive to variations in o< . Furthermore, it is
1.8 C, for e«< )} , and with increasing e< it approaches an approximate
limit toward value of 5 C, . A distributed radial constraint can produce an
order of magnitude variation in the wave speed for the first type of waves while
a distributed axial constraint merely produces a variation of less than 15%.
However, both a radial or axial constraint can cause an infinite change of the
wave speed for the second type of waves.

Regardless of the constraints, the first or slower type of waves are
strongly attenuated for o« <\ and the attenuation due to the blood viscosity

diminishes rapidly with increasing 4 . In the absence of constraints the waves
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of the second or faster type exhibit small attenuation due to the viscosity of the
blood for € <.Z and =X > 100, It assumes a maximum for =< 1,9
However, in contrast to the slow waves, the attenuation of the second type of

waves is strongly affected by distributed external constraints.

.

For the first type of waves the wall displacement has a dominant radial
component at high frequencies but at low frequencies the axial displacement
component dominates. The second type of waves always has a dominant axial
displacement component. Both of these statements are true for weak external
constraints. With strong constraints, the displacement mode shape can be
altered considerably. The wall motions associated with the two types of waves
indicate that the faster type of waves involves a strong shearing interaction
between the blood and the vessel wall while the slow type of waves should exhibit
relatively strong pressure fluctuations, particularly at higher frequencies.

The second type of waves were found to be much more sensitive to
variations in the system parameters than the first type of waves. The phase
angle between pressure and radial wall displacement for the first type of wave
are almost negligible. The investigation of the effects of discrete constraints
such as clamps or electromagnetic flow meters on the pressure and instantaneous
mass flow has demonstrated that such constraints may produce significant
changes.

A comparison of the present analysis with the experimental results
obtained by Van Citters from a mechanical model of a blood vessel showed
qualitative and some quantitative agreement. In particular Van Citters' results
verify the theoretical prediction that weak distributed external constraint can
almost completely attenuate the second type of waves. This fact may account
for the lack of in vivo evidence of naturally occurring waves of the second type.

The application of the present analysis to the data of Anliker, et al,
however, has indicated that the viscosity of the blood does not cause sufficient
attenuation nor the proper variation of the attenuation with frequency. Since
experimental information is usually obtained only for larger Reynolds numbers,
the solution for this limiting case was modified to include wall viscoelasticity,
and the resulting system of equations was applied to predict the viscoelastic
attenuation parameter for waves of the first type. With one exception5) this
parameter is considerably larger than that previously reported.

For high frequencies the blood viscosity contributed only a few percent
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to the attenuation parameters, ®¢ )«,; /' Ro . However, with frequency extending
down to 1 cps. and no external constraints, the viscosity contribution is of the
order of 14% for the first type of the order of 65% for the second type of waves.
Two features of the solution are questionable and both are related to
limitations of the analysis. First, the limitaﬁon to A/R,?»> | is required
in the linearized equations of motion for the fluid and is also implied in the
application of a membrane analysis for the displacements of the vessel wall.
Therefore, with a fluid of constént viscosity, the analytical results obtained for
large o< or equivalently large W will be questionable unless the wave speed
also increases such that A = CA still satisfies %;o >>/ . Second, the
limitation (V-‘-'r:':),: \%. << ) appears to be unrealistic when o¢  approaches
zero since C, also approaches zero. Unfortunately no experimental data is
available for small value of o¢ . In a more realistic study of the first type
of waves with small e& the convective terms have to be included in the Navier

Stokes equations.
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Figure 35. The Mode Shape Parameter for Axial Fluid Velocity on the Axis with
the First Type of Waves as a Function of Reynolds Number
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Figure 55. Radial Distribution of the Magnitude of the Axial Velocity
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Figure 56. Radial Distribution of the Phase of the Axial Velocity
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Figure 58. Radial Distribution of the Phase of the Radial Velocity
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Figure 61. Magnitude of Relative Errors in Pressure and Fluid Mass Flow for

Sample Calculation 3
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Figure 62. Phase of Relative Errors in Pressure and Fluid Mass Flow for
Sample Calculation 3
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137



0.32 , ‘ . ] } ,
Y X
w e™aon osa7e ™ IR. —
028 R-Mc PO ogare™ 7| T —
| —" '—'_ L—=
0.24 ‘ :
0.20 ==t~
’___/‘)]L—;.
0.16 - =t - M
—/}T‘:Q— ‘;‘-%_t——--—'—‘-:‘ ~——
g = - o=t ——m——— ]
- 1 1 I
0.12
S —m— - I L /
R
0-08— ~| - —c;f Pa- P3 _] ———]
(1-m)e““*p(0,1) (——-H———'_m)ew 501}
Pz PA" P&A
L e et -euw ——
0.04 (-m)ep(o, 1) (I-m)€ “"p(0,1)
o i l 1 | | .
0 10 20 30 40 50 60 70
L /R,

Figure 64. Magnitude of the Relative Error in Arbitrary Coefficients for
Sample Calculation 4
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Figure 65. Phase of the Relative Error in Arbitrary Coefficients for Sample

Calculation 4
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